mediapipe/mediapipe2/examples/desktop/youtube8m/README.md
2021-06-10 23:01:19 +00:00

158 lines
5.7 KiB
Markdown

### Steps to run the YouTube-8M feature extraction graph
1. Checkout the repository and follow
[the installation instructions](https://github.com/google/mediapipe/blob/master/docs/getting_started/install.md)
to set up MediaPipe.
```bash
git clone https://github.com/google/mediapipe.git
cd mediapipe
```
2. Download the PCA and model data.
```bash
mkdir /tmp/mediapipe
cd /tmp/mediapipe
curl -O http://data.yt8m.org/pca_matrix_data/inception3_mean_matrix_data.pb
curl -O http://data.yt8m.org/pca_matrix_data/inception3_projection_matrix_data.pb
curl -O http://data.yt8m.org/pca_matrix_data/vggish_mean_matrix_data.pb
curl -O http://data.yt8m.org/pca_matrix_data/vggish_projection_matrix_data.pb
curl -O http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
tar -xvf /tmp/mediapipe/inception-2015-12-05.tgz
```
3. Get the VGGish frozen graph.
Note: To run step 3 and step 4, you must have Python 2.7 or 3.5+ installed
with the TensorFlow 1.14+ package installed.
```bash
# cd to the root directory of the MediaPipe repo
cd -
pip3 install tf_slim
python -m mediapipe.examples.desktop.youtube8m.generate_vggish_frozen_graph
```
4. Generate a MediaSequence metadata from the input video.
Note: the output file is /tmp/mediapipe/metadata.pb
```bash
# change clip_end_time_sec to match the length of your video.
python -m mediapipe.examples.desktop.youtube8m.generate_input_sequence_example \
--path_to_input_video=/absolute/path/to/the/local/video/file \
--clip_end_time_sec=120
```
5. Run the MediaPipe binary to extract the features.
```bash
bazel build -c opt --linkopt=-s \
--define MEDIAPIPE_DISABLE_GPU=1 --define no_aws_support=true \
mediapipe/examples/desktop/youtube8m:extract_yt8m_features
GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/youtube8m/extract_yt8m_features \
--calculator_graph_config_file=mediapipe/graphs/youtube8m/feature_extraction.pbtxt \
--input_side_packets=input_sequence_example=/tmp/mediapipe/metadata.pb \
--output_side_packets=output_sequence_example=/tmp/mediapipe/features.pb
```
6. [Optional] Read the features.pb in Python.
```
import tensorflow as tf
sequence_example = open('/tmp/mediapipe/features.pb', 'rb').read()
print(tf.train.SequenceExample.FromString(sequence_example))
```
### Steps to run the YouTube-8M inference graph with the YT8M dataset
1. Download the YT8M dataset
For example, download one shard of the training data:
```bash
curl http://us.data.yt8m.org/2/frame/train/trainpj.tfrecord --output /tmp/mediapipe/trainpj.tfrecord
```
2. Copy the baseline model [(model card)](https://drive.google.com/file/d/1xTCi9-Nm9dt2KIk8WR0dDFrIssWawyXy/view) to local.
```bash
curl -o /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz http://data.yt8m.org/models/baseline/saved_model.tar.gz
tar -xvf /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz -C /tmp/mediapipe
```
3. Build and run the inference binary.
```bash
bazel build -c opt --define='MEDIAPIPE_DISABLE_GPU=1' --linkopt=-s \
mediapipe/examples/desktop/youtube8m:model_inference
GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/youtube8m/model_inference \
--calculator_graph_config_file=mediapipe/graphs/youtube8m/yt8m_dataset_model_inference.pbtxt \
--input_side_packets=tfrecord_path=/tmp/mediapipe/trainpj.tfrecord,record_index=0,desired_segment_size=5 \
--output_stream=annotation_summary \
--output_stream_file=/tmp/summary \
--output_side_packets=yt8m_id \
--output_side_packets_file=/tmp/yt8m_id
```
### Steps to run the YouTube-8M model inference graph with Web Interface
1. Copy the baseline model [(model card)](https://drive.google.com/file/d/1xTCi9-Nm9dt2KIk8WR0dDFrIssWawyXy/view) to local.
```bash
curl -o /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz http://data.yt8m.org/models/baseline/saved_model.tar.gz
tar -xvf /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz -C /tmp/mediapipe
```
2. Build the inference binary.
```bash
bazel build -c opt --define='MEDIAPIPE_DISABLE_GPU=1' --linkopt=-s \
mediapipe/examples/desktop/youtube8m:model_inference
```
3. Run the python web server.
Note: pip3 install absl-py
```bash
python mediapipe/examples/desktop/youtube8m/viewer/server.py --root `pwd`
```
Navigate to localhost:8008 in a web browser.
### Steps to run the YouTube-8M model inference graph with a local video
1. Make sure you have the features.pb from the feature extraction pipeline.
2. Copy the baseline model [(model card)](https://drive.google.com/file/d/1xTCi9-Nm9dt2KIk8WR0dDFrIssWawyXy/view) to local.
```bash
curl -o /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz http://data.yt8m.org/models/baseline/saved_model.tar.gz
tar -xvf /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz -C /tmp/mediapipe
```
3. Build and run the inference binary.
```bash
bazel build -c opt --define='MEDIAPIPE_DISABLE_GPU=1' --linkopt=-s \
mediapipe/examples/desktop/youtube8m:model_inference
# segment_size is the number of seconds window of frames.
# overlap is the number of seconds adjacent segments share.
GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/youtube8m/model_inference \
--calculator_graph_config_file=mediapipe/graphs/youtube8m/local_video_model_inference.pbtxt \
--input_side_packets=input_sequence_example_path=/tmp/mediapipe/features.pb,input_video_path=/absolute/path/to/the/local/video/file,output_video_path=/tmp/mediapipe/annotated_video.mp4,segment_size=5,overlap=4
```
4. View the annotated video.