### Steps to run the YouTube-8M feature extraction graph 1. Checkout the repository and follow [the installation instructions](https://github.com/google/mediapipe/blob/master/docs/getting_started/install.md) to set up MediaPipe. ```bash git clone https://github.com/google/mediapipe.git cd mediapipe ``` 2. Download the PCA and model data. ```bash mkdir /tmp/mediapipe cd /tmp/mediapipe curl -O http://data.yt8m.org/pca_matrix_data/inception3_mean_matrix_data.pb curl -O http://data.yt8m.org/pca_matrix_data/inception3_projection_matrix_data.pb curl -O http://data.yt8m.org/pca_matrix_data/vggish_mean_matrix_data.pb curl -O http://data.yt8m.org/pca_matrix_data/vggish_projection_matrix_data.pb curl -O http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz tar -xvf /tmp/mediapipe/inception-2015-12-05.tgz ``` 3. Get the VGGish frozen graph. Note: To run step 3 and step 4, you must have Python 2.7 or 3.5+ installed with the TensorFlow 1.14+ package installed. ```bash # cd to the root directory of the MediaPipe repo cd - pip3 install tf_slim python -m mediapipe.examples.desktop.youtube8m.generate_vggish_frozen_graph ``` 4. Generate a MediaSequence metadata from the input video. Note: the output file is /tmp/mediapipe/metadata.pb ```bash # change clip_end_time_sec to match the length of your video. python -m mediapipe.examples.desktop.youtube8m.generate_input_sequence_example \ --path_to_input_video=/absolute/path/to/the/local/video/file \ --clip_end_time_sec=120 ``` 5. Run the MediaPipe binary to extract the features. ```bash bazel build -c opt --linkopt=-s \ --define MEDIAPIPE_DISABLE_GPU=1 --define no_aws_support=true \ mediapipe/examples/desktop/youtube8m:extract_yt8m_features GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/youtube8m/extract_yt8m_features \ --calculator_graph_config_file=mediapipe/graphs/youtube8m/feature_extraction.pbtxt \ --input_side_packets=input_sequence_example=/tmp/mediapipe/metadata.pb \ --output_side_packets=output_sequence_example=/tmp/mediapipe/features.pb ``` 6. [Optional] Read the features.pb in Python. ``` import tensorflow as tf sequence_example = open('/tmp/mediapipe/features.pb', 'rb').read() print(tf.train.SequenceExample.FromString(sequence_example)) ``` ### Steps to run the YouTube-8M inference graph with the YT8M dataset 1. Download the YT8M dataset For example, download one shard of the training data: ```bash curl http://us.data.yt8m.org/2/frame/train/trainpj.tfrecord --output /tmp/mediapipe/trainpj.tfrecord ``` 2. Copy the baseline model [(model card)](https://drive.google.com/file/d/1xTCi9-Nm9dt2KIk8WR0dDFrIssWawyXy/view) to local. ```bash curl -o /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz http://data.yt8m.org/models/baseline/saved_model.tar.gz tar -xvf /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz -C /tmp/mediapipe ``` 3. Build and run the inference binary. ```bash bazel build -c opt --define='MEDIAPIPE_DISABLE_GPU=1' --linkopt=-s \ mediapipe/examples/desktop/youtube8m:model_inference GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/youtube8m/model_inference \ --calculator_graph_config_file=mediapipe/graphs/youtube8m/yt8m_dataset_model_inference.pbtxt \ --input_side_packets=tfrecord_path=/tmp/mediapipe/trainpj.tfrecord,record_index=0,desired_segment_size=5 \ --output_stream=annotation_summary \ --output_stream_file=/tmp/summary \ --output_side_packets=yt8m_id \ --output_side_packets_file=/tmp/yt8m_id ``` ### Steps to run the YouTube-8M model inference graph with Web Interface 1. Copy the baseline model [(model card)](https://drive.google.com/file/d/1xTCi9-Nm9dt2KIk8WR0dDFrIssWawyXy/view) to local. ```bash curl -o /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz http://data.yt8m.org/models/baseline/saved_model.tar.gz tar -xvf /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz -C /tmp/mediapipe ``` 2. Build the inference binary. ```bash bazel build -c opt --define='MEDIAPIPE_DISABLE_GPU=1' --linkopt=-s \ mediapipe/examples/desktop/youtube8m:model_inference ``` 3. Run the python web server. Note: pip3 install absl-py ```bash python mediapipe/examples/desktop/youtube8m/viewer/server.py --root `pwd` ``` Navigate to localhost:8008 in a web browser. ### Steps to run the YouTube-8M model inference graph with a local video 1. Make sure you have the features.pb from the feature extraction pipeline. 2. Copy the baseline model [(model card)](https://drive.google.com/file/d/1xTCi9-Nm9dt2KIk8WR0dDFrIssWawyXy/view) to local. ```bash curl -o /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz http://data.yt8m.org/models/baseline/saved_model.tar.gz tar -xvf /tmp/mediapipe/yt8m_baseline_saved_model.tar.gz -C /tmp/mediapipe ``` 3. Build and run the inference binary. ```bash bazel build -c opt --define='MEDIAPIPE_DISABLE_GPU=1' --linkopt=-s \ mediapipe/examples/desktop/youtube8m:model_inference # segment_size is the number of seconds window of frames. # overlap is the number of seconds adjacent segments share. GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/youtube8m/model_inference \ --calculator_graph_config_file=mediapipe/graphs/youtube8m/local_video_model_inference.pbtxt \ --input_side_packets=input_sequence_example_path=/tmp/mediapipe/features.pb,input_video_path=/absolute/path/to/the/local/video/file,output_video_path=/tmp/mediapipe/annotated_video.mp4,segment_size=5,overlap=4 ``` 4. View the annotated video.