mediapipe/docs/getting_started/install.md
MediaPipe Team e9fbe868e5 Project import generated by Copybara.
GitOrigin-RevId: e3a43e4e5e519cd14df7095749059e2613bdcf76
2020-07-08 18:24:46 -07:00

22 KiB
Raw Blame History

layout title parent nav_order
default Installation Getting Started 1

Installation

{: .no_toc }

  1. TOC {:toc}

Note: To interoperate with OpenCV, OpenCV 3.x and above are preferred. OpenCV 2.x currently works but interoperability support may be deprecated in the future.

Note: If you plan to use TensorFlow calculators and example apps, there is a known issue with gcc and g++ version 6.3 and 7.3. Please use other versions.

Note: To make Mediapipe work with TensorFlow, please set Python 3.7 as the default Python version and install the Python "six" library by running pip3 install --user six.

Note: To build and run Android example apps, see these instructions. To build and run iOS example apps, see these instructions.

Installing on Debian and Ubuntu

  1. Checkout MediaPipe repository.

    $ git clone https://github.com/google/mediapipe.git
    
    # Change directory into MediaPipe root directory
    $ cd mediapipe
    
  2. Install Bazel.

    Follow the official Bazel documentation to install Bazel 2.0 or higher.

    For Nvidia Jetson and Raspberry Pi devices with ARM Ubuntu, Bazel needs to be built from source.

    # For Bazel 3.0.0
    wget https://github.com/bazelbuild/bazel/releases/download/3.0.0/bazel-3.0.0-dist.zip
    sudo apt-get install build-essential openjdk-8-jdk python zip unzip
    unzip bazel-3.0.0-dist.zip
    env EXTRA_BAZEL_ARGS="--host_javabase=@local_jdk//:jdk" bash ./compile.sh
    sudo cp output/bazel /usr/local/bin/
    
  3. Install OpenCV and FFmpeg.

    Option 1. Use package manager tool to install the pre-compiled OpenCV libraries. FFmpeg will be installed via libopencv-video-dev.

    Note: Debian 9 and Ubuntu 16.04 provide OpenCV 2.4.9. You may want to take option 2 or 3 to install OpenCV 3 or above.

    $ sudo apt-get install libopencv-core-dev libopencv-highgui-dev \
                           libopencv-calib3d-dev libopencv-features2d-dev \
                           libopencv-imgproc-dev libopencv-video-dev
    

    opencv_linux.BUILD is configured for x86_64 by default. For Nvidia Jetson and Raspberry Pi devices with ARM Ubuntu, the lib paths need to be modified.

    sed -i "s/x86_64-linux-gnu/aarch64-linux-gnu/g" third_party/opencv_linux.BUILD
    

    Option 2. Run setup_opencv.sh to automatically build OpenCV from source and modify MediaPipe's OpenCV config.

    Option 3. Follow OpenCV's documentation to manually build OpenCV from source code.

    Note: You may need to modify WORKSPACE and opencv_linux.BUILD to point MediaPipe to your own OpenCV libraries, e.g., if OpenCV 4 is installed in "/usr/local/", you need to update the "linux_opencv" new_local_repository rule in WORKSPACE and "opencv" cc_library rule in opencv_linux.BUILD like the following:

    new_local_repository(
        name = "linux_opencv",
        build_file = "@//third_party:opencv_linux.BUILD",
        path = "/usr/local",
    )
    
    cc_library(
        name = "opencv",
        srcs = glob(
            [
                "lib/libopencv_core.so",
                "lib/libopencv_highgui.so",
                "lib/libopencv_imgcodecs.so",
                "lib/libopencv_imgproc.so",
                "lib/libopencv_video.so",
                "lib/libopencv_videoio.so",
            ],
        ),
        hdrs = glob(["include/opencv4/**/*.h*"]),
        includes = ["include/opencv4/"],
        linkstatic = 1,
        visibility = ["//visibility:public"],
    )
    
  4. For running desktop examples on Linux only (not on OS X) with GPU acceleration.

    # Requires a GPU with EGL driver support.
    # Can use mesa GPU libraries for desktop, (or Nvidia/AMD equivalent).
    sudo apt-get install mesa-common-dev libegl1-mesa-dev libgles2-mesa-dev
    
    # To compile with GPU support, replace
    --define MEDIAPIPE_DISABLE_GPU=1
    # with
    --copt -DMESA_EGL_NO_X11_HEADERS --copt -DEGL_NO_X11
    # when building GPU examples.
    
  5. Run the Hello World desktop example.

    $ export GLOG_logtostderr=1
    
    # if you are running on Linux desktop with CPU only
    $ bazel run --define MEDIAPIPE_DISABLE_GPU=1 \
        mediapipe/examples/desktop/hello_world:hello_world
    
    # If you are running on Linux desktop with GPU support enabled (via mesa drivers)
    $ bazel run --copt -DMESA_EGL_NO_X11_HEADERS --copt -DEGL_NO_X11 \
        mediapipe/examples/desktop/hello_world:hello_world
    
    # Should print:
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    

Installing on CentOS

Disclaimer: Running MediaPipe on CentOS is experimental.

  1. Checkout MediaPipe repository.

    $ git clone https://github.com/google/mediapipe.git
    
    # Change directory into MediaPipe root directory
    $ cd mediapipe
    
  2. Install Bazel.

    Follow the official Bazel documentation to install Bazel 2.0 or higher.

  3. Install OpenCV.

    Option 1. Use package manager tool to install the pre-compiled version.

    Note: yum installs OpenCV 2.4.5, which may have an opencv/gstreamer issue.

    $ sudo yum install opencv-devel
    

    Option 2. Build OpenCV from source code.

    Note: You may need to modify WORKSPACE and opencv_linux.BUILD to point MediaPipe to your own OpenCV libraries, e.g., if OpenCV 4 is installed in "/usr/local/", you need to update the "linux_opencv" new_local_repository rule in WORKSPACE and "opencv" cc_library rule in opencv_linux.BUILD like the following:

    new_local_repository(
        name = "linux_opencv",
        build_file = "@//third_party:opencv_linux.BUILD",
        path = "/usr/local",
    )
    
    cc_library(
        name = "opencv",
        srcs = glob(
            [
                "lib/libopencv_core.so",
                "lib/libopencv_highgui.so",
                "lib/libopencv_imgcodecs.so",
                "lib/libopencv_imgproc.so",
                "lib/libopencv_video.so",
                "lib/libopencv_videoio.so",
            ],
        ),
        hdrs = glob(["include/opencv4/**/*.h*"]),
        includes = ["include/opencv4/"],
        linkstatic = 1,
        visibility = ["//visibility:public"],
    )
    
  4. Run the Hello World desktop example.

    $ export GLOG_logtostderr=1
    # Need bazel flag 'MEDIAPIPE_DISABLE_GPU=1' if you are running on Linux desktop with CPU only
    $ bazel run --define MEDIAPIPE_DISABLE_GPU=1 \
        mediapipe/examples/desktop/hello_world:hello_world
    
    # Should print:
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    

Installing on macOS

  1. Prework:

    • Install Homebrew.
    • Install Xcode and its Command Line Tools by xcode-select --install.
  2. Checkout MediaPipe repository.

    $ git clone https://github.com/google/mediapipe.git
    
    $ cd mediapipe
    
  3. Install Bazel.

    Option 1. Use package manager tool to install Bazel

    $ brew install bazel
    # Run 'bazel version' to check version of bazel
    

    Option 2. Follow the official Bazel documentation to install Bazel 2.0 or higher.

  4. Install OpenCV and FFmpeg.

    Option 1. Use HomeBrew package manager tool to install the pre-compiled OpenCV 3.4.5 libraries. FFmpeg will be installed via OpenCV.

    $ brew install opencv@3
    
    # There is a known issue caused by the glog dependency. Uninstall glog.
    $ brew uninstall --ignore-dependencies glog
    

    Option 2. Use MacPorts package manager tool to install the OpenCV libraries.

    $ port install opencv
    

    Note: when using MacPorts, please edit the WORKSPACE, opencv_macos.BUILD, and ffmpeg_macos.BUILD files like the following:

    new_local_repository(
        name = "macos_opencv",
        build_file = "@//third_party:opencv_macos.BUILD",
        path = "/opt",
    )
    
    new_local_repository(
        name = "macos_ffmpeg",
        build_file = "@//third_party:ffmpeg_macos.BUILD",
        path = "/opt",
    )
    
    cc_library(
        name = "opencv",
        srcs = glob(
            [
                "local/lib/libopencv_core.dylib",
                "local/lib/libopencv_highgui.dylib",
                "local/lib/libopencv_imgcodecs.dylib",
                "local/lib/libopencv_imgproc.dylib",
                "local/lib/libopencv_video.dylib",
                "local/lib/libopencv_videoio.dylib",
            ],
        ),
        hdrs = glob(["local/include/opencv2/**/*.h*"]),
        includes = ["local/include/"],
        linkstatic = 1,
        visibility = ["//visibility:public"],
    )
    
    cc_library(
        name = "libffmpeg",
        srcs = glob(
            [
                "local/lib/libav*.dylib",
            ],
        ),
        hdrs = glob(["local/include/libav*/*.h"]),
        includes = ["local/include/"],
        linkopts = [
            "-lavcodec",
            "-lavformat",
            "-lavutil",
        ],
        linkstatic = 1,
        visibility = ["//visibility:public"],
    )
    
    
  5. Make sure that Python 3 and the Python "six" library are installed.

    $ brew install python
    $ sudo ln -s -f /usr/local/bin/python3.7 /usr/local/bin/python
    $ python --version
    Python 3.7.4
    $ pip3 install --user six
    
  6. Run the Hello World desktop example.

    $ export GLOG_logtostderr=1
    # Need bazel flag 'MEDIAPIPE_DISABLE_GPU=1' as desktop GPU is currently not supported
    $ bazel run --define MEDIAPIPE_DISABLE_GPU=1 \
        mediapipe/examples/desktop/hello_world:hello_world
    
    # Should print:
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    

Installing on Windows

Disclaimer: Running MediaPipe on Windows is experimental.

Note: building MediaPipe Android apps is still not possible on native Windows. Please do this in WSL instead and see the WSL setup instruction in the next section.

  1. Install MSYS2 and edit the %PATH% environment variable.

    If MSYS2 is installed to C:\msys64, add C:\msys64\usr\bin to your %PATH% environment variable.

  2. Install necessary packages.

    C:\> pacman -S git patch unzip
    
  3. Install Python and allow the executable to edit the %PATH% environment variable.

    Download Python Windows executable from https://www.python.org/downloads/windows/ and install.

  4. Install Visual C++ Build Tools 2019 and WinSDK

    Go to https://visualstudio.microsoft.com/visual-cpp-build-tools, download build tools, and install Microsoft Visual C++ 2019 Redistributable and Microsoft Build Tools 2019.

    Download the WinSDK from https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk/ and install.

  5. Install Bazel and add the location of the Bazel executable to the %PATH% environment variable.

    Follow the official Bazel documentation to install Bazel 2.0 or higher.

  6. Set Bazel variables.

    # Find the exact paths and version numbers from your local version.
    C:\> set BAZEL_VS=C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools
    C:\> set BAZEL_VC=C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC
    C:\> set BAZEL_VC_FULL_VERSION=14.25.28610
    C:\> set BAZEL_WINSDK_FULL_VERSION=10.1.18362.1
    
  7. Checkout MediaPipe repository.

    C:\Users\Username\mediapipe_repo> git clone https://github.com/google/mediapipe.git
    
    # Change directory into MediaPipe root directory
    C:\Users\Username\mediapipe_repo> cd mediapipe
    
  8. Install OpenCV.

    Download the Windows executable from https://opencv.org/releases/ and install. We currently use OpenCV 3.4.10. Remember to edit the WORKSPACE file if OpenCV is not installed at C:\opencv.

    new_local_repository(
        name = "windows_opencv",
        build_file = "@//third_party:opencv_windows.BUILD",
        path = "C:\\<path to opencv>\\build",
    )
    
  9. Run the Hello World desktop example.

    Note: For building MediaPipe on Windows, please add --action_env PYTHON_BIN_PATH="C:/path/to/python.exe" to the build command. Alternatively, you can follow issue 724 to fix the python configuration manually.

    C:\Users\Username\mediapipe_repo>bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 --action_env PYTHON_BIN_PATH="C:/python_36/python.exe" mediapipe/examples/desktop/hello_world
    
    C:\Users\Username\mediapipe_repo>set GLOG_logtostderr=1
    
    C:\Users\Username\mediapipe_repo>bazel-bin\mediapipe\examples\desktop\hello_world\hello_world.exe
    
    # should print:
    # I20200514 20:43:12.277598  1200 hello_world.cc:56] Hello World!
    # I20200514 20:43:12.278597  1200 hello_world.cc:56] Hello World!
    # I20200514 20:43:12.279618  1200 hello_world.cc:56] Hello World!
    # I20200514 20:43:12.279618  1200 hello_world.cc:56] Hello World!
    # I20200514 20:43:12.279618  1200 hello_world.cc:56] Hello World!
    # I20200514 20:43:12.279618  1200 hello_world.cc:56] Hello World!
    # I20200514 20:43:12.279618  1200 hello_world.cc:56] Hello World!
    # I20200514 20:43:12.279618  1200 hello_world.cc:56] Hello World!
    # I20200514 20:43:12.279618  1200 hello_world.cc:56] Hello World!
    # I20200514 20:43:12.280613  1200 hello_world.cc:56] Hello World!
    
    

Installing on Windows Subsystem for Linux (WSL)

Note: The pre-built OpenCV packages don't support cameras in WSL. Unless you compile OpenCV with FFMPEG and GStreamer in WSL, the live demos won't work with any cameras. Alternatively, you use a video file as input.

  1. Follow the instruction to install Windows Sysystem for Linux (Ubuntu).

  2. Install Windows ADB and start the ADB server in Windows.

    Note: Windows' and WSLs adb versions must be the same version, e.g., if WSL has ADB 1.0.39, you need to download the corresponding Windows ADB from here.

  3. Launch WSL.

    Note: All the following steps will be executed in WSL. The Windows directory of the Linux Subsystem can be found in C:\Users\YourUsername\AppData\Local\Packages\CanonicalGroupLimited.UbuntuonWindows_SomeID\LocalState\rootfs\home

  4. Install the needed packages.

    username@DESKTOP-TMVLBJ1:~$ sudo apt-get update && sudo apt-get install -y build-essential git python zip adb openjdk-8-jdk
    
  5. Install Bazel.

    username@DESKTOP-TMVLBJ1:~$ curl -sLO --retry 5 --retry-max-time 10 \
    https://storage.googleapis.com/bazel/3.0.0/release/bazel-3.0.0-installer-linux-x86_64.sh && \
    sudo mkdir -p /usr/local/bazel/3.0.0 && \
    chmod 755 bazel-3.0.0-installer-linux-x86_64.sh && \
    sudo ./bazel-3.0.0-installer-linux-x86_64.sh --prefix=/usr/local/bazel/3.0.0 && \
    source /usr/local/bazel/3.0.0/lib/bazel/bin/bazel-complete.bash
    
    username@DESKTOP-TMVLBJ1:~$ /usr/local/bazel/3.0.0/lib/bazel/bin/bazel version && \
    alias bazel='/usr/local/bazel/3.0.0/lib/bazel/bin/bazel'
    
  6. Checkout MediaPipe repository.

    username@DESKTOP-TMVLBJ1:~$ git clone https://github.com/google/mediapipe.git
    
    username@DESKTOP-TMVLBJ1:~$ cd mediapipe
    
  7. Install OpenCV and FFmpeg.

    Option 1. Use package manager tool to install the pre-compiled OpenCV libraries. FFmpeg will be installed via libopencv-video-dev.

    username@DESKTOP-TMVLBJ1:~/mediapipe$ sudo apt-get install libopencv-core-dev libopencv-highgui-dev \
                           libopencv-calib3d-dev libopencv-features2d-dev \
                           libopencv-imgproc-dev libopencv-video-dev
    

    Option 2. Run setup_opencv.sh to automatically build OpenCV from source and modify MediaPipe's OpenCV config.

    Option 3. Follow OpenCV's documentation to manually build OpenCV from source code.

    Note: You may need to modify WORKSPACE and opencv_linux.BUILD to point MediaPipe to your own OpenCV libraries, e.g., if OpenCV 4 is installed in "/usr/local/", you need to update the "linux_opencv" new_local_repository rule in WORKSPACE and "opencv" cc_library rule in opencv_linux.BUILD like the following:

    new_local_repository(
        name = "linux_opencv",
        build_file = "@//third_party:opencv_linux.BUILD",
        path = "/usr/local",
    )
    
    cc_library(
        name = "opencv",
        srcs = glob(
            [
                "lib/libopencv_core.so",
                "lib/libopencv_highgui.so",
                "lib/libopencv_imgcodecs.so",
                "lib/libopencv_imgproc.so",
                "lib/libopencv_video.so",
                "lib/libopencv_videoio.so",
            ],
        ),
        hdrs = glob(["include/opencv4/**/*.h*"]),
        includes = ["include/opencv4/"],
        linkstatic = 1,
        visibility = ["//visibility:public"],
    )
    
  8. Run the Hello World desktop example.

    username@DESKTOP-TMVLBJ1:~/mediapipe$ export GLOG_logtostderr=1
    
    # Need bazel flag 'MEDIAPIPE_DISABLE_GPU=1' as desktop GPU is currently not supported
    username@DESKTOP-TMVLBJ1:~/mediapipe$ bazel run --define MEDIAPIPE_DISABLE_GPU=1 \
        mediapipe/examples/desktop/hello_world:hello_world
    
    # Should print:
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    

Installing using Docker

This will use a Docker image that will isolate mediapipe's installation from the rest of the system.

  1. Install Docker on your host system.

  2. Build a docker image with tag "mediapipe".

    $ git clone https://github.com/google/mediapipe.git
    $ cd mediapipe
    $ docker build --tag=mediapipe .
    
    # Should print:
    # Sending build context to Docker daemon  147.8MB
    # Step 1/9 : FROM ubuntu:latest
    # latest: Pulling from library/ubuntu
    # 6abc03819f3e: Pull complete
    # 05731e63f211: Pull complete
    # ........
    # See http://bazel.build/docs/getting-started.html to start a new project!
    # Removing intermediate container 82901b5e79fa
    # ---> f5d5f402071b
    # Step 9/9 : COPY . /mediapipe/
    # ---> a95c212089c5
    # Successfully built a95c212089c5
    # Successfully tagged mediapipe:latest
    
  3. Run the Hello World desktop example.

    $ docker run -it --name mediapipe mediapipe:latest
    
    root@bca08b91ff63:/mediapipe# GLOG_logtostderr=1 bazel run --define MEDIAPIPE_DISABLE_GPU=1 mediapipe/examples/desktop/hello_world:hello_world
    
    # Should print:
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    # Hello World!
    
  4. Build a MediaPipe Android example.

    $ docker run -it --name mediapipe mediapipe:latest
    
    root@bca08b91ff63:/mediapipe# bash ./setup_android_sdk_and_ndk.sh
    
    # Should print:
    # Android NDK is now installed. Consider setting $ANDROID_NDK_HOME environment variable to be /root/Android/Sdk/ndk-bundle/android-ndk-r18b
    # Set android_ndk_repository and android_sdk_repository in WORKSPACE
    # Done
    
    root@bca08b91ff63:/mediapipe# bazel build -c opt --config=android_arm64 mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu:objectdetectiongpu
    
    # Should print:
    # Target //mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu:objectdetectiongpu up-to-date:
    # bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu/objectdetectiongpu_deploy.jar
    # bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu/objectdetectiongpu_unsigned.apk
    # bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu/objectdetectiongpu.apk
    # INFO: Elapsed time: 144.462s, Critical Path: 79.47s
    # INFO: 1958 processes: 1 local, 1863 processwrapper-sandbox, 94 worker.
    # INFO: Build completed successfully, 2028 total actions