mediapipe/docs/solutions/face_detection.md
MediaPipe Team 8b57bf879b Project import generated by Copybara.
GitOrigin-RevId: 08c2016a4df5aef571b464a4d4491f38c6b2af10
2021-06-03 17:04:35 -04:00

278 lines
11 KiB
Markdown

---
layout: default
title: Face Detection
parent: Solutions
nav_order: 1
---
# MediaPipe Face Detection
{: .no_toc }
<details close markdown="block">
<summary>
Table of contents
</summary>
{: .text-delta }
1. TOC
{:toc}
</details>
---
## Overview
MediaPipe Face Detection is an ultrafast face detection solution that comes with
6 landmarks and multi-face support. It is based on
[BlazeFace](https://arxiv.org/abs/1907.05047), a lightweight and well-performing
face detector tailored for mobile GPU inference. The detector's super-realtime
performance enables it to be applied to any live viewfinder experience that
requires an accurate facial region of interest as an input for other
task-specific models, such as 3D facial keypoint or geometry estimation (e.g.,
[MediaPipe Face Mesh](./face_mesh.md)), facial features or expression
classification, and face region segmentation. BlazeFace uses a lightweight
feature extraction network inspired by, but distinct from
[MobileNetV1/V2](https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html),
a GPU-friendly anchor scheme modified from
[Single Shot MultiBox Detector (SSD)](https://arxiv.org/abs/1512.02325), and an
improved tie resolution strategy alternative to non-maximum suppression. For
more information about BlazeFace, please see the [Resources](#resources)
section.
![face_detection_android_gpu.gif](../images/mobile/face_detection_android_gpu.gif)
## Solution APIs
### Configuration Options
Naming style and availability may differ slightly across platforms/languages.
#### min_detection_confidence
Minimum confidence value (`[0.0, 1.0]`) from the face detection model for the
detection to be considered successful. Default to `0.5`.
### Output
Naming style may differ slightly across platforms/languages.
#### detections
Collection of detected faces, where each face is represented as a detection
proto message that contains a bounding box and 6 key points (right eye, left
eye, nose tip, mouth center, right ear tragion, and left ear tragion). The
bounding box is composed of `xmin` and `width` (both normalized to `[0.0, 1.0]`
by the image width) and `ymin` and `height` (both normalized to `[0.0, 1.0]` by
the image height). Each key point is composed of `x` and `y`, which are
normalized to `[0.0, 1.0]` by the image width and height respectively.
### Python Solution API
Please first follow general [instructions](../getting_started/python.md) to
install MediaPipe Python package, then learn more in the companion
[Python Colab](#resources) and the usage example below.
Supported configuration options:
* [min_detection_confidence](#min_detection_confidence)
```python
import cv2
import mediapipe as mp
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils
# For static images:
IMAGE_FILES = []
with mp_face_detection.FaceDetection(
min_detection_confidence=0.5) as face_detection:
for idx, file in enumerate(IMAGE_FILES):
image = cv2.imread(file)
# Convert the BGR image to RGB and process it with MediaPipe Face Detection.
results = face_detection.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Draw face detections of each face.
if not results.detections:
continue
annotated_image = image.copy()
for detection in results.detections:
print('Nose tip:')
print(mp_face_detection.get_key_point(
detection, mp_face_detection.FaceKeyPoint.NOSE_TIP))
mp_drawing.draw_detection(annotated_image, detection)
cv2.imwrite('/tmp/annotated_image' + str(idx) + '.png', annotated_image)
# For webcam input:
cap = cv2.VideoCapture(0)
with mp_face_detection.FaceDetection(
min_detection_confidence=0.5) as face_detection:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = face_detection.process(image)
# Draw the face detection annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.detections:
for detection in results.detections:
mp_drawing.draw_detection(image, detection)
cv2.imshow('MediaPipe Face Detection', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
```
### JavaScript Solution API
Please first see general [introduction](../getting_started/javascript.md) on
MediaPipe in JavaScript, then learn more in the companion [web demo](#resources)
and the following usage example.
Supported configuration options:
* [minDetectionConfidence](#min_detection_confidence)
```html
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/camera_utils/camera_utils.js" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/control_utils/control_utils.js" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/drawing_utils/drawing_utils.js" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/face_detection/face_detection.js" crossorigin="anonymous"></script>
</head>
<body>
<div class="container">
<video class="input_video"></video>
<canvas class="output_canvas" width="1280px" height="720px"></canvas>
</div>
</body>
</html>
```
```javascript
<script type="module">
const videoElement = document.getElementsByClassName('input_video')[0];
const canvasElement = document.getElementsByClassName('output_canvas')[0];
const canvasCtx = canvasElement.getContext('2d');
function onResults(results) {
// Draw the overlays.
canvasCtx.save();
canvasCtx.clearRect(0, 0, canvasElement.width, canvasElement.height);
canvasCtx.drawImage(
results.image, 0, 0, canvasElement.width, canvasElement.height);
if (results.detections.length > 0) {
drawingUtils.drawRectangle(
canvasCtx, results.detections[0].boundingBox,
{color: 'blue', lineWidth: 4, fillColor: '#00000000'});
drawingUtils.drawLandmarks(canvasCtx, results.detections[0].landmarks, {
color: 'red',
radius: 5,
});
}
canvasCtx.restore();
}
const faceDetection = new FaceDetection({locateFile: (file) => {
return `https://cdn.jsdelivr.net/npm/@mediapipe/face_detection@0.0/${file}`;
}});
faceDetection.setOptions({
minDetectionConfidence: 0.5
});
faceDetection.onResults(onResults);
const camera = new Camera(videoElement, {
onFrame: async () => {
await faceDetection.send({image: videoElement});
},
width: 1280,
height: 720
});
camera.start();
</script>
```
## Example Apps
Please first see general instructions for
[Android](../getting_started/android.md), [iOS](../getting_started/ios.md) and
[desktop](../getting_started/cpp.md) on how to build MediaPipe examples.
Note: To visualize a graph, copy the graph and paste it into
[MediaPipe Visualizer](https://viz.mediapipe.dev/). For more information on how
to visualize its associated subgraphs, please see
[visualizer documentation](../tools/visualizer.md).
### Mobile
#### GPU Pipeline
* Graph:
[`mediapipe/graphs/face_detection/face_detection_mobile_gpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_mobile_gpu.pbtxt)
* Android target:
[(or download prebuilt ARM64 APK)](https://drive.google.com/open?id=1DZTCy1gp238kkMnu4fUkwI3IrF77Mhy5)
[`mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectiongpu:facedetectiongpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectiongpu/BUILD)
* iOS target:
[`mediapipe/examples/ios/facedetectiongpu:FaceDetectionGpuApp`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/facedetectiongpu/BUILD)
#### CPU Pipeline
This is very similar to the [GPU pipeline](#gpu-pipeline) except that at the
beginning and the end of the pipeline it performs GPU-to-CPU and CPU-to-GPU
image transfer respectively. As a result, the rest of graph, which shares the
same configuration as the GPU pipeline, runs entirely on CPU.
* Graph:
[`mediapipe/graphs/face_detection/face_detection_mobile_cpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_mobile_cpu.pbtxt)
* Android target:
[(or download prebuilt ARM64 APK)](https://drive.google.com/open?id=1npiZY47jbO5m2YaL63o5QoCQs40JC6C7)
[`mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectioncpu:facedetectioncpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectioncpu/BUILD)
* iOS target:
[`mediapipe/examples/ios/facedetectioncpu:FaceDetectionCpuApp`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/facedetectioncpu/BUILD)
### Desktop
* Running on CPU:
* Graph:
[`mediapipe/graphs/face_detection/face_detection_desktop_live.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_desktop_live.pbtxt)
* Target:
[`mediapipe/examples/desktop/face_detection:face_detection_cpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/face_detection/BUILD)
* Running on GPU
* Graph:
[`mediapipe/graphs/face_detection/face_detection_mobile_gpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_mobile_gpu.pbtxt)
* Target:
[`mediapipe/examples/desktop/face_detection:face_detection_gpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/face_detection/BUILD)
### Web
Please refer to [these instructions](../index.md#mediapipe-on-the-web).
### Coral
Please refer to
[these instructions](https://github.com/google/mediapipe/tree/master/mediapipe/examples/coral/README.md)
to cross-compile and run MediaPipe examples on the
[Coral Dev Board](https://coral.ai/products/dev-board).
## Resources
* Paper:
[BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs](https://arxiv.org/abs/1907.05047)
([presentation](https://docs.google.com/presentation/d/1YCtASfnYyZtH-41QvnW5iZxELFnf0MF-pPWSLGj8yjQ/present?slide=id.g5bc8aeffdd_1_0))
([poster](https://drive.google.com/file/d/1u6aB6wxDY7X2TmeUUKgFydulNtXkb3pu/view))
* [Models and model cards](./models.md#face_detection)
* [Web demo](https://code.mediapipe.dev/codepen/face_detection)
* [Python Colab](https://mediapipe.page.link/face_detection_py_colab)