a9b643e0f5
GitOrigin-RevId: ff83882955f1a1e2a043ff4e71278be9d7217bbe
145 lines
4.4 KiB
Markdown
145 lines
4.4 KiB
Markdown
---
|
|
layout: default
|
|
title: MediaPipe in Python
|
|
parent: Getting Started
|
|
has_children: true
|
|
has_toc: false
|
|
nav_order: 3
|
|
---
|
|
|
|
# MediaPipe in Python
|
|
{: .no_toc }
|
|
|
|
1. TOC
|
|
{:toc}
|
|
---
|
|
|
|
## Ready-to-use Python Solutions
|
|
|
|
MediaPipe offers ready-to-use yet customizable Python solutions as a prebuilt
|
|
Python package. MediaPipe Python package is available on
|
|
[PyPI](https://pypi.org/project/mediapipe/) for Linux, macOS and Windows.
|
|
|
|
You can, for instance, activate a Python virtual environment:
|
|
|
|
```bash
|
|
$ python3 -m venv mp_env && source mp_env/bin/activate
|
|
```
|
|
|
|
Install MediaPipe Python package and start Python interpreter:
|
|
|
|
```bash
|
|
(mp_env)$ pip install mediapipe
|
|
(mp_env)$ python3
|
|
```
|
|
|
|
In Python interpreter, import the package and start using one of the solutions:
|
|
|
|
```python
|
|
import mediapipe as mp
|
|
mp_face_mesh = mp.solutions.face_mesh
|
|
```
|
|
|
|
Tip: Use command `deactivate` to later exit the Python virtual environment.
|
|
|
|
To learn more about configuration options and usage examples, please find
|
|
details in each solution via the links below:
|
|
|
|
* [MediaPipe Face Detection](../solutions/face_detection#python-solution-api)
|
|
* [MediaPipe Face Mesh](../solutions/face_mesh#python-solution-api)
|
|
* [MediaPipe Hands](../solutions/hands#python-solution-api)
|
|
* [MediaPipe Holistic](../solutions/holistic#python-solution-api)
|
|
* [MediaPipe Objectron](../solutions/objectron#python-solution-api)
|
|
* [MediaPipe Pose](../solutions/pose#python-solution-api)
|
|
|
|
## MediaPipe on Google Colab
|
|
|
|
* [MediaPipe Face Detection Colab](https://mediapipe.page.link/face_detection_py_colab)
|
|
* [MediaPipe Face Mesh Colab](https://mediapipe.page.link/face_mesh_py_colab)
|
|
* [MediaPipe Hands Colab](https://mediapipe.page.link/hands_py_colab)
|
|
* [MediaPipe Holistic Colab](https://mediapipe.page.link/holistic_py_colab)
|
|
* [MediaPipe Objectron Colab](https://mediapipe.page.link/objectron_py_colab)
|
|
* [MediaPipe Pose Colab](https://mediapipe.page.link/pose_py_colab)
|
|
* [MediaPipe Pose Classification Colab (Basic)](https://mediapipe.page.link/pose_classification_basic)
|
|
* [MediaPipe Pose Classification Colab (Extended)](https://mediapipe.page.link/pose_classification_extended)
|
|
|
|
## MediaPipe Python Framework
|
|
|
|
The ready-to-use solutions are built upon the MediaPipe Python framework, which
|
|
can be used by advanced users to run their own MediaPipe graphs in Python.
|
|
Please see [here](./python_framework.md) for more info.
|
|
|
|
## Building MediaPipe Python Package
|
|
|
|
Follow the steps below only if you have local changes and need to build the
|
|
Python package from source. Otherwise, we strongly encourage our users to simply
|
|
run `pip install mediapipe` to use the ready-to-use solutions, more convenient
|
|
and much faster.
|
|
|
|
MediaPipe PyPI currently doesn't provide aarch64 Python wheel
|
|
files. For building and using MediaPipe Python on aarch64 Linux systems such as
|
|
Nvidia Jetson and Raspberry Pi, please read
|
|
[here](https://github.com/jiuqiant/mediapipe-python-aarch64).
|
|
|
|
1. Make sure that Bazel and OpenCV are correctly installed and configured for
|
|
MediaPipe. Please see [Installation](./install.md) for how to setup Bazel
|
|
and OpenCV for MediaPipe on Linux and macOS.
|
|
|
|
2. Install the following dependencies.
|
|
|
|
Debian or Ubuntu:
|
|
|
|
```bash
|
|
$ sudo apt install python3-dev
|
|
$ sudo apt install python3-venv
|
|
$ sudo apt install -y protobuf-compiler
|
|
|
|
# If you need to build opencv from source.
|
|
$ sudo apt install cmake
|
|
```
|
|
|
|
macOS:
|
|
|
|
```bash
|
|
$ brew install protobuf
|
|
|
|
# If you need to build opencv from source.
|
|
$ brew install cmake
|
|
```
|
|
|
|
Windows:
|
|
|
|
Download the latest protoc win64 zip from
|
|
[the Protobuf GitHub repo](https://github.com/protocolbuffers/protobuf/releases),
|
|
unzip the file, and copy the protoc.exe executable to a preferred
|
|
location. Please ensure that location is added into the Path environment
|
|
variable.
|
|
|
|
3. Activate a Python virtual environment.
|
|
|
|
```bash
|
|
$ python3 -m venv mp_env && source mp_env/bin/activate
|
|
```
|
|
|
|
4. In the virtual environment, go to the MediaPipe repo directory.
|
|
|
|
5. Install the required Python packages.
|
|
|
|
```bash
|
|
(mp_env)mediapipe$ pip3 install -r requirements.txt
|
|
```
|
|
|
|
6. Generate and install MediaPipe package.
|
|
|
|
```bash
|
|
(mp_env)mediapipe$ python3 setup.py gen_protos
|
|
(mp_env)mediapipe$ python3 setup.py install --link-opencv
|
|
```
|
|
|
|
or
|
|
|
|
```bash
|
|
(mp_env)mediapipe$ python3 setup.py gen_protos
|
|
(mp_env)mediapipe$ python3 setup.py bdist_wheel
|
|
```
|