122 lines
3.7 KiB
Plaintext
122 lines
3.7 KiB
Plaintext
# MediaPipe graph that performs face detection with TensorFlow Lite on CPU.
|
|
|
|
input_stream: "VIDEO:input_video"
|
|
output_stream: "DETECTIONS:output_detections"
|
|
|
|
|
|
# Transforms the input image on CPU to a 128x128 image. To scale the input
|
|
# image, the scale_mode option is set to FIT to preserve the aspect ratio,
|
|
# resulting in potential letterboxing in the transformed image.
|
|
node: {
|
|
calculator: "ImageTransformationCalculator"
|
|
input_stream: "IMAGE:input_video"
|
|
output_stream: "IMAGE:transformed_input_video_cpu"
|
|
output_stream: "LETTERBOX_PADDING:letterbox_padding"
|
|
options: {
|
|
[mediapipe.ImageTransformationCalculatorOptions.ext] {
|
|
output_width: 192
|
|
output_height: 192
|
|
scale_mode: FIT
|
|
}
|
|
}
|
|
}
|
|
|
|
# Converts the transformed input image on CPU into an image tensor stored as a
|
|
# TfLiteTensor.
|
|
node {
|
|
calculator: "TfLiteConverterCalculator"
|
|
input_stream: "IMAGE:transformed_input_video_cpu"
|
|
output_stream: "TENSORS:image_tensor"
|
|
}
|
|
|
|
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
|
|
# vector of tensors representing, for instance, detection boxes/keypoints and
|
|
# scores.
|
|
node {
|
|
calculator: "TfLiteInferenceCalculator"
|
|
input_stream: "TENSORS:image_tensor"
|
|
output_stream: "TENSORS:detection_tensors"
|
|
options: {
|
|
[mediapipe.TfLiteInferenceCalculatorOptions.ext] {
|
|
model_path: "mediapipe/modules/face_detection/face_detection_back.tflite"
|
|
}
|
|
}
|
|
}
|
|
|
|
# Generates a single side packet containing a vector of SSD anchors based on
|
|
# the specification in the options.
|
|
node {
|
|
calculator: "SsdAnchorsCalculator"
|
|
output_side_packet: "anchors"
|
|
options: {
|
|
[mediapipe.SsdAnchorsCalculatorOptions.ext] {
|
|
num_layers: 1
|
|
min_scale: 0.1484375
|
|
max_scale: 0.75
|
|
input_size_height: 192
|
|
input_size_width: 192
|
|
anchor_offset_x: 0.5
|
|
anchor_offset_y: 0.5
|
|
strides: 4
|
|
aspect_ratios: 1.0
|
|
fixed_anchor_size: true
|
|
interpolated_scale_aspect_ratio: 0.0
|
|
}
|
|
}
|
|
}
|
|
|
|
# Decodes the detection tensors generated by the TensorFlow Lite model, based on
|
|
# the SSD anchors and the specification in the options, into a vector of
|
|
# detections. Each detection describes a detected object.
|
|
node {
|
|
calculator: "TfLiteTensorsToDetectionsCalculator"
|
|
input_stream: "TENSORS:detection_tensors"
|
|
input_side_packet: "ANCHORS:anchors"
|
|
output_stream: "DETECTIONS:detections"
|
|
options: {
|
|
[mediapipe.TfLiteTensorsToDetectionsCalculatorOptions.ext] {
|
|
num_classes: 1
|
|
num_boxes: 2304
|
|
num_coords: 16
|
|
box_coord_offset: 0
|
|
keypoint_coord_offset: 4
|
|
num_keypoints: 6
|
|
num_values_per_keypoint: 2
|
|
sigmoid_score: true
|
|
score_clipping_thresh: 100.0
|
|
reverse_output_order: true
|
|
x_scale: 192.0
|
|
y_scale: 192.0
|
|
h_scale: 192.0
|
|
w_scale: 192.0
|
|
min_score_thresh: 0.6
|
|
}
|
|
}
|
|
}
|
|
|
|
# Performs non-max suppression to remove excessive detections.
|
|
node {
|
|
calculator: "NonMaxSuppressionCalculator"
|
|
input_stream: "detections"
|
|
output_stream: "filtered_detections"
|
|
options: {
|
|
[mediapipe.NonMaxSuppressionCalculatorOptions.ext] {
|
|
min_suppression_threshold: 0.3
|
|
overlap_type: INTERSECTION_OVER_UNION
|
|
algorithm: WEIGHTED
|
|
return_empty_detections: true
|
|
}
|
|
}
|
|
}
|
|
|
|
# Adjusts detection locations (already normalized to [0.f, 1.f]) on the
|
|
# letterboxed image (after image transformation with the FIT scale mode) to the
|
|
# corresponding locations on the same image with the letterbox removed (the
|
|
# input image to the graph before image transformation).
|
|
node {
|
|
calculator: "DetectionLetterboxRemovalCalculator"
|
|
input_stream: "DETECTIONS:filtered_detections"
|
|
input_stream: "LETTERBOX_PADDING:letterbox_padding"
|
|
output_stream: "DETECTIONS:output_detections"
|
|
}
|