# MediaPipe graph that performs face detection with TensorFlow Lite on CPU. input_stream: "VIDEO:input_video" output_stream: "DETECTIONS:output_detections" # Transforms the input image on CPU to a 128x128 image. To scale the input # image, the scale_mode option is set to FIT to preserve the aspect ratio, # resulting in potential letterboxing in the transformed image. node: { calculator: "ImageTransformationCalculator" input_stream: "IMAGE:input_video" output_stream: "IMAGE:transformed_input_video_cpu" output_stream: "LETTERBOX_PADDING:letterbox_padding" options: { [mediapipe.ImageTransformationCalculatorOptions.ext] { output_width: 192 output_height: 192 scale_mode: FIT } } } # Converts the transformed input image on CPU into an image tensor stored as a # TfLiteTensor. node { calculator: "TfLiteConverterCalculator" input_stream: "IMAGE:transformed_input_video_cpu" output_stream: "TENSORS:image_tensor" } # Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a # vector of tensors representing, for instance, detection boxes/keypoints and # scores. node { calculator: "TfLiteInferenceCalculator" input_stream: "TENSORS:image_tensor" output_stream: "TENSORS:detection_tensors" options: { [mediapipe.TfLiteInferenceCalculatorOptions.ext] { model_path: "mediapipe/modules/face_detection/face_detection_back.tflite" } } } # Generates a single side packet containing a vector of SSD anchors based on # the specification in the options. node { calculator: "SsdAnchorsCalculator" output_side_packet: "anchors" options: { [mediapipe.SsdAnchorsCalculatorOptions.ext] { num_layers: 1 min_scale: 0.1484375 max_scale: 0.75 input_size_height: 192 input_size_width: 192 anchor_offset_x: 0.5 anchor_offset_y: 0.5 strides: 4 aspect_ratios: 1.0 fixed_anchor_size: true interpolated_scale_aspect_ratio: 0.0 } } } # Decodes the detection tensors generated by the TensorFlow Lite model, based on # the SSD anchors and the specification in the options, into a vector of # detections. Each detection describes a detected object. node { calculator: "TfLiteTensorsToDetectionsCalculator" input_stream: "TENSORS:detection_tensors" input_side_packet: "ANCHORS:anchors" output_stream: "DETECTIONS:detections" options: { [mediapipe.TfLiteTensorsToDetectionsCalculatorOptions.ext] { num_classes: 1 num_boxes: 2304 num_coords: 16 box_coord_offset: 0 keypoint_coord_offset: 4 num_keypoints: 6 num_values_per_keypoint: 2 sigmoid_score: true score_clipping_thresh: 100.0 reverse_output_order: true x_scale: 192.0 y_scale: 192.0 h_scale: 192.0 w_scale: 192.0 min_score_thresh: 0.6 } } } # Performs non-max suppression to remove excessive detections. node { calculator: "NonMaxSuppressionCalculator" input_stream: "detections" output_stream: "filtered_detections" options: { [mediapipe.NonMaxSuppressionCalculatorOptions.ext] { min_suppression_threshold: 0.3 overlap_type: INTERSECTION_OVER_UNION algorithm: WEIGHTED return_empty_detections: true } } } # Adjusts detection locations (already normalized to [0.f, 1.f]) on the # letterboxed image (after image transformation with the FIT scale mode) to the # corresponding locations on the same image with the letterbox removed (the # input image to the graph before image transformation). node { calculator: "DetectionLetterboxRemovalCalculator" input_stream: "DETECTIONS:filtered_detections" input_stream: "LETTERBOX_PADDING:letterbox_padding" output_stream: "DETECTIONS:output_detections" }