412ab42d1f
GitOrigin-RevId: f13909f37b252098f9a87d8b34e7fc855b8787b3
52 lines
2.9 KiB
Markdown
52 lines
2.9 KiB
Markdown
![MediaPipe](mediapipe/docs/images/mediapipe_small.png?raw=true "MediaPipe logo")
|
|
=======================================================================
|
|
|
|
[MediaPipe](http://mediapipe.dev) is a framework for building multimodal (eg. video, audio, any time series data) applied ML pipelines. With MediaPipe, a perception pipeline can be built as a graph of modular components, including, for instance, inference models (e.g., TensorFlow, TFLite) and media processing functions.
|
|
|
|
![Real-time Face Detection](mediapipe/docs/images/realtime_face_detection.gif)
|
|
|
|
> "<em>MediaPipe has made it extremely easy to build our 3D person pose reconstruction demo app, facilitating accelerated neural network inference on device and synchronization of our result visualization with the video capture stream. Highly recommended!</em>" - George Papandreou, CTO, [Ariel AI](https://arielai.com)
|
|
|
|
## ML Solutions in MediaPipe
|
|
|
|
* [Hand Tracking](mediapipe/docs/hand_tracking_mobile_gpu.md)
|
|
* [Face Detection](mediapipe/docs/face_detection_mobile_gpu.md)
|
|
* [Hair Segmentation](mediapipe/docs/hair_segmentation_mobile_gpu.md)
|
|
* [Object Detection](mediapipe/docs/object_detection_mobile_gpu.md)
|
|
|
|
![hand_tracking](mediapipe/docs/images/mobile/hand_tracking_3d_android_gpu_small.gif)
|
|
![face_detection](mediapipe/docs/images/mobile/face_detection_android_gpu_small.gif)
|
|
![hair_segmentation](mediapipe/docs/images/mobile/hair_segmentation_android_gpu_small.gif)
|
|
![object_detection](mediapipe/docs/images/mobile/object_detection_android_gpu_small.gif)
|
|
|
|
## Installation
|
|
Follow these [instructions](mediapipe/docs/install.md).
|
|
|
|
## Getting started
|
|
See mobile and desktop [examples](mediapipe/docs/examples.md).
|
|
|
|
## Documentation
|
|
[MediaPipe Read-the-Docs](https://mediapipe.readthedocs.io/) or [docs.mediapipe.dev](https://docs.mediapipe.dev)
|
|
|
|
Check out the [Examples page](https://mediapipe.readthedocs.io/en/latest/examples.html) for tutorials on how to use MediaPipe. [Concepts page](https://mediapipe.readthedocs.io/en/latest/concepts.html) for basic definitions
|
|
|
|
## Visualizing MediaPipe graphs
|
|
A web-based visualizer is hosted on [viz.mediapipe.dev](https://viz.mediapipe.dev/). Please also see instructions [here](mediapipe/docs/visualizer.md).
|
|
|
|
## Community forum
|
|
* [Discuss](https://groups.google.com/forum/#!forum/mediapipe) - General community discussion around MediaPipe
|
|
|
|
## Publications
|
|
* [MediaPipe: A Framework for Building Perception Pipelines](https://arxiv.org/abs/1906.08172)
|
|
|
|
## Events
|
|
[Open sourced at CVPR 2019](https://sites.google.com/corp/view/perception-cv4arvr/mediapipe) on June 17~20 in Long Beach, CA
|
|
|
|
## Alpha Disclaimer
|
|
MediaPipe is currently in alpha for v0.6. We are still making breaking API changes and expect to get to stable API by v1.0.
|
|
|
|
## Contributing
|
|
We welcome contributions. Please follow these [guidelines](./CONTRIBUTING.md).
|
|
|
|
We use GitHub issues for tracking requests and bugs. Please post questions to the MediaPipe Stack Overflow with a 'mediapipe' tag.
|