142 lines
3.9 KiB
Plaintext
142 lines
3.9 KiB
Plaintext
|
# MediaPipe graph that performs object detection on desktop with TensorFlow Lite
|
||
|
# on CPU.
|
||
|
# Used in the example in
|
||
|
# mediapipe/examples/desktop/template_matching:template_matching_tflite
|
||
|
|
||
|
# max_queue_size limits the number of packets enqueued on any input stream
|
||
|
# by throttling inputs to the graph. This makes the graph only process one
|
||
|
# frame per time.
|
||
|
max_queue_size: 1
|
||
|
|
||
|
# Decodes an input video file into images and a video header.
|
||
|
node {
|
||
|
calculator: "OpenCvVideoDecoderCalculator"
|
||
|
input_side_packet: "INPUT_FILE_PATH:input_video_path"
|
||
|
output_stream: "VIDEO:input_video"
|
||
|
output_stream: "VIDEO_PRESTREAM:input_video_header"
|
||
|
}
|
||
|
|
||
|
node: {
|
||
|
calculator: "ImageTransformationCalculator"
|
||
|
input_stream: "IMAGE:input_video"
|
||
|
output_stream: "IMAGE:scaled_input_video"
|
||
|
node_options: {
|
||
|
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
|
||
|
output_width: 640
|
||
|
output_height: 640
|
||
|
scale_mode: FILL_AND_CROP
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
node {
|
||
|
calculator: "ImagePropertiesCalculator"
|
||
|
input_stream: "IMAGE:scaled_input_video"
|
||
|
output_stream: "SIZE:input_video_size"
|
||
|
}
|
||
|
|
||
|
node {
|
||
|
calculator: "FeatureDetectorCalculator"
|
||
|
input_stream: "IMAGE:scaled_input_video"
|
||
|
output_stream: "FEATURES:features"
|
||
|
output_stream: "LANDMARKS:landmarks"
|
||
|
output_stream: "PATCHES:patches"
|
||
|
}
|
||
|
|
||
|
# input tensors: 200*32*32*1 float
|
||
|
# output tensors: 200*40 float, only first keypoint.size()*40 is knift features,
|
||
|
# rest is padded by zero.
|
||
|
node {
|
||
|
calculator: "TfLiteInferenceCalculator"
|
||
|
input_stream: "TENSORS:patches"
|
||
|
output_stream: "TENSORS:knift_feature_tensors"
|
||
|
node_options: {
|
||
|
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
|
||
|
model_path: "mediapipe/models/knift_float.tflite"
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
node {
|
||
|
calculator: "TfLiteTensorsToFloatsCalculator"
|
||
|
input_stream: "TENSORS:knift_feature_tensors"
|
||
|
output_stream: "FLOATS:knift_feature_floats"
|
||
|
}
|
||
|
|
||
|
node {
|
||
|
calculator: "BoxDetectorCalculator"
|
||
|
input_stream: "FEATURES:features"
|
||
|
input_stream: "IMAGE_SIZE:input_video_size"
|
||
|
input_stream: "DESCRIPTORS:knift_feature_floats"
|
||
|
output_stream: "BOXES:detections"
|
||
|
|
||
|
node_options: {
|
||
|
[type.googleapis.com/mediapipe.BoxDetectorCalculatorOptions] {
|
||
|
detector_options {
|
||
|
index_type: OPENCV_BF
|
||
|
detect_every_n_frame: 1
|
||
|
}
|
||
|
index_proto_filename: "mediapipe/models/knift_index.pb"
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
node {
|
||
|
calculator: "TimedBoxListIdToLabelCalculator"
|
||
|
input_stream: "detections"
|
||
|
output_stream: "labeled_detections"
|
||
|
node_options: {
|
||
|
[type.googleapis.com/mediapipe.TimedBoxListIdToLabelCalculatorOptions] {
|
||
|
label_map_path: "mediapipe/models/knift_labelmap.txt"
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
node {
|
||
|
calculator: "TimedBoxListToRenderDataCalculator"
|
||
|
input_stream: "BOX_LIST:labeled_detections"
|
||
|
output_stream: "RENDER_DATA:box_render_data"
|
||
|
node_options: {
|
||
|
[type.googleapis.com/mediapipe.TimedBoxListToRenderDataCalculatorOptions] {
|
||
|
box_color { r: 255 g: 0 b: 0 }
|
||
|
thickness: 5.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
node {
|
||
|
calculator: "LandmarksToRenderDataCalculator"
|
||
|
input_stream: "NORM_LANDMARKS:landmarks"
|
||
|
output_stream: "RENDER_DATA:landmarks_render_data"
|
||
|
node_options: {
|
||
|
[type.googleapis.com/mediapipe.LandmarksToRenderDataCalculatorOptions] {
|
||
|
landmark_color { r: 0 g: 255 b: 0 }
|
||
|
thickness: 2.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
# Draws annotations and overlays them on top of the input images.
|
||
|
node {
|
||
|
calculator: "AnnotationOverlayCalculator"
|
||
|
input_stream: "IMAGE:input_video"
|
||
|
input_stream: "box_render_data"
|
||
|
input_stream: "landmarks_render_data"
|
||
|
output_stream: "IMAGE:output_video"
|
||
|
}
|
||
|
|
||
|
# Encodes the annotated images into a video file, adopting properties specified
|
||
|
# in the input video header, e.g., video framerate.
|
||
|
node {
|
||
|
calculator: "OpenCvVideoEncoderCalculator"
|
||
|
input_stream: "VIDEO:output_video"
|
||
|
input_stream: "VIDEO_PRESTREAM:input_video_header"
|
||
|
input_side_packet: "OUTPUT_FILE_PATH:output_video_path"
|
||
|
node_options: {
|
||
|
[type.googleapis.com/mediapipe.OpenCvVideoEncoderCalculatorOptions]: {
|
||
|
codec: "avc1"
|
||
|
video_format: "mp4"
|
||
|
}
|
||
|
}
|
||
|
}
|