# MediaPipe graph that performs object detection on desktop with TensorFlow Lite # on CPU. # Used in the example in # mediapipe/examples/desktop/template_matching:template_matching_tflite # max_queue_size limits the number of packets enqueued on any input stream # by throttling inputs to the graph. This makes the graph only process one # frame per time. max_queue_size: 1 # Decodes an input video file into images and a video header. node { calculator: "OpenCvVideoDecoderCalculator" input_side_packet: "INPUT_FILE_PATH:input_video_path" output_stream: "VIDEO:input_video" output_stream: "VIDEO_PRESTREAM:input_video_header" } node: { calculator: "ImageTransformationCalculator" input_stream: "IMAGE:input_video" output_stream: "IMAGE:scaled_input_video" node_options: { [type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] { output_width: 640 output_height: 640 scale_mode: FILL_AND_CROP } } } node { calculator: "ImagePropertiesCalculator" input_stream: "IMAGE:scaled_input_video" output_stream: "SIZE:input_video_size" } node { calculator: "FeatureDetectorCalculator" input_stream: "IMAGE:scaled_input_video" output_stream: "FEATURES:features" output_stream: "LANDMARKS:landmarks" output_stream: "PATCHES:patches" } # input tensors: 200*32*32*1 float # output tensors: 200*40 float, only first keypoint.size()*40 is knift features, # rest is padded by zero. node { calculator: "TfLiteInferenceCalculator" input_stream: "TENSORS:patches" output_stream: "TENSORS:knift_feature_tensors" node_options: { [type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] { model_path: "mediapipe/models/knift_float.tflite" } } } node { calculator: "TfLiteTensorsToFloatsCalculator" input_stream: "TENSORS:knift_feature_tensors" output_stream: "FLOATS:knift_feature_floats" } node { calculator: "BoxDetectorCalculator" input_stream: "FEATURES:features" input_stream: "IMAGE_SIZE:input_video_size" input_stream: "DESCRIPTORS:knift_feature_floats" output_stream: "BOXES:detections" node_options: { [type.googleapis.com/mediapipe.BoxDetectorCalculatorOptions] { detector_options { index_type: OPENCV_BF detect_every_n_frame: 1 } index_proto_filename: "mediapipe/models/knift_index.pb" } } } node { calculator: "TimedBoxListIdToLabelCalculator" input_stream: "detections" output_stream: "labeled_detections" node_options: { [type.googleapis.com/mediapipe.TimedBoxListIdToLabelCalculatorOptions] { label_map_path: "mediapipe/models/knift_labelmap.txt" } } } node { calculator: "TimedBoxListToRenderDataCalculator" input_stream: "BOX_LIST:labeled_detections" output_stream: "RENDER_DATA:box_render_data" node_options: { [type.googleapis.com/mediapipe.TimedBoxListToRenderDataCalculatorOptions] { box_color { r: 255 g: 0 b: 0 } thickness: 5.0 } } } node { calculator: "LandmarksToRenderDataCalculator" input_stream: "NORM_LANDMARKS:landmarks" output_stream: "RENDER_DATA:landmarks_render_data" node_options: { [type.googleapis.com/mediapipe.LandmarksToRenderDataCalculatorOptions] { landmark_color { r: 0 g: 255 b: 0 } thickness: 2.0 } } } # Draws annotations and overlays them on top of the input images. node { calculator: "AnnotationOverlayCalculator" input_stream: "IMAGE:input_video" input_stream: "box_render_data" input_stream: "landmarks_render_data" output_stream: "IMAGE:output_video" } # Encodes the annotated images into a video file, adopting properties specified # in the input video header, e.g., video framerate. node { calculator: "OpenCvVideoEncoderCalculator" input_stream: "VIDEO:output_video" input_stream: "VIDEO_PRESTREAM:input_video_header" input_side_packet: "OUTPUT_FILE_PATH:output_video_path" node_options: { [type.googleapis.com/mediapipe.OpenCvVideoEncoderCalculatorOptions]: { codec: "avc1" video_format: "mp4" } } }