mediapipe/mediapipe2/python/solutions/objectron_test.py
2021-06-10 23:01:19 +00:00

82 lines
3.2 KiB
Python

# Copyright 2020 The MediaPipe Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for mediapipe.python.solutions.objectron."""
import os
from absl.testing import absltest
from absl.testing import parameterized
import cv2
import numpy as np
import numpy.testing as npt
# resources dependency
from mediapipe.python.solutions import objectron as mp_objectron
TEST_IMAGE_PATH = 'mediapipe/python/solutions/testdata'
DIFF_THRESHOLD = 30 # pixels
EXPECTED_BOX_COORDINATES_PREDICTION = [[[236, 413], [408, 474], [135, 457],
[383, 505], [80, 478], [408, 345],
[130, 347], [384, 355], [72, 353]],
[[241, 206], [411, 279], [131, 280],
[392, 249], [78, 252], [412, 155],
[140, 178], [396, 105], [89, 137]]]
class ObjectronTest(parameterized.TestCase):
def test_invalid_image_shape(self):
with mp_objectron.Objectron() as objectron:
with self.assertRaisesRegex(
ValueError, 'Input image must contain three channel rgb data.'):
objectron.process(np.arange(36, dtype=np.uint8).reshape(3, 3, 4))
def test_blank_image(self):
with mp_objectron.Objectron() as objectron:
image = np.zeros([100, 100, 3], dtype=np.uint8)
image.fill(255)
results = objectron.process(image)
self.assertIsNone(results.detected_objects)
@parameterized.named_parameters(('static_image_mode', True, 1),
('video_mode', False, 5))
def test_multi_objects(self, static_image_mode, num_frames):
image_path = os.path.join(os.path.dirname(__file__), 'testdata/shoes.jpg')
image = cv2.imread(image_path)
with mp_objectron.Objectron(
static_image_mode=static_image_mode,
max_num_objects=2,
min_detection_confidence=0.5) as objectron:
for _ in range(num_frames):
results = objectron.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
multi_box_coordinates = []
for detected_object in results.detected_objects:
landmarks = detected_object.landmarks_2d
self.assertLen(landmarks.landmark, 9)
x = [landmark.x for landmark in landmarks.landmark]
y = [landmark.y for landmark in landmarks.landmark]
box_coordinates = np.transpose(np.stack((y, x))) * image.shape[0:2]
multi_box_coordinates.append(box_coordinates)
self.assertLen(multi_box_coordinates, 2)
prediction_error = np.abs(
np.asarray(multi_box_coordinates) -
np.asarray(EXPECTED_BOX_COORDINATES_PREDICTION))
npt.assert_array_less(prediction_error, DIFF_THRESHOLD)
if __name__ == '__main__':
absltest.main()