mediapipe/mediapipe2/calculators/tflite/tflite_model_calculator.cc
2021-06-10 23:01:19 +00:00

87 lines
3.1 KiB
C++

// Copyright 2020 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <functional>
#include <memory>
#include <string>
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/packet.h"
#include "mediapipe/framework/port/ret_check.h"
#include "tensorflow/lite/model.h"
namespace mediapipe {
// Loads TfLite model from model blob specified as input side packet and outputs
// corresponding side packet.
//
// Input side packets:
// MODEL_BLOB - TfLite model blob/file-contents (std::string). You can read
// model blob from file (using whatever APIs you have) and pass
// it to the graph as input side packet or you can use some of
// calculators like LocalFileContentsCalculator to get model
// blob and use it as input here.
//
// Output side packets:
// MODEL - TfLite model. (std::unique_ptr<tflite::FlatBufferModel,
// std::function<void(tflite::FlatBufferModel*)>>)
//
// Example use:
//
// node {
// calculator: "TfLiteModelCalculator"
// input_side_packet: "MODEL_BLOB:model_blob"
// output_side_packet: "MODEL:model"
// }
//
class TfLiteModelCalculator : public CalculatorBase {
public:
using TfLiteModelPtr =
std::unique_ptr<tflite::FlatBufferModel,
std::function<void(tflite::FlatBufferModel*)>>;
static absl::Status GetContract(CalculatorContract* cc) {
cc->InputSidePackets().Tag("MODEL_BLOB").Set<std::string>();
cc->OutputSidePackets().Tag("MODEL").Set<TfLiteModelPtr>();
return absl::OkStatus();
}
absl::Status Open(CalculatorContext* cc) override {
const Packet& model_packet = cc->InputSidePackets().Tag("MODEL_BLOB");
const std::string& model_blob = model_packet.Get<std::string>();
std::unique_ptr<tflite::FlatBufferModel> model =
tflite::FlatBufferModel::BuildFromBuffer(model_blob.data(),
model_blob.size());
RET_CHECK(model) << "Failed to load TfLite model from blob.";
cc->OutputSidePackets().Tag("MODEL").Set(
MakePacket<TfLiteModelPtr>(TfLiteModelPtr(
model.release(), [model_packet](tflite::FlatBufferModel* model) {
// Keeping model_packet in order to keep underlying model blob
// which can be released only after TfLite model is not needed
// anymore (deleted).
delete model;
})));
return absl::OkStatus();
}
absl::Status Process(CalculatorContext* cc) override {
return absl::OkStatus();
}
};
REGISTER_CALCULATOR(TfLiteModelCalculator);
} // namespace mediapipe