mediapipe/mediapipe/calculators/audio/basic_time_series_calculators.cc
MediaPipe Team 350fbb2100 Project import generated by Copybara.
GitOrigin-RevId: d073f8e21be2fcc0e503cb97c6695078b6b75310
2021-02-27 03:30:05 -05:00

406 lines
14 KiB
C++

// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Basic Calculators that operate on TimeSeries streams.
#include "mediapipe/calculators/audio/basic_time_series_calculators.h"
#include <cmath>
#include <memory>
#include "Eigen/Core"
#include "absl/strings/str_cat.h"
#include "mediapipe/framework/port/ret_check.h"
#include "mediapipe/util/time_series_util.h"
namespace mediapipe {
namespace {
static bool SafeMultiply(int x, int y, int* result) {
static_assert(sizeof(int64) >= 2 * sizeof(int),
"Unable to detect overflow after multiplication");
const int64 big = static_cast<int64>(x) * static_cast<int64>(y);
if (big > static_cast<int64>(INT_MIN) && big < static_cast<int64>(INT_MAX)) {
if (result != nullptr) *result = static_cast<int>(big);
return true;
} else {
return false;
}
}
} // namespace
absl::Status BasicTimeSeriesCalculatorBase::GetContract(
CalculatorContract* cc) {
cc->Inputs().Index(0).Set<Matrix>(
// Input stream with TimeSeriesHeader.
);
cc->Outputs().Index(0).Set<Matrix>(
// Output stream with TimeSeriesHeader.
);
return absl::OkStatus();
}
absl::Status BasicTimeSeriesCalculatorBase::Open(CalculatorContext* cc) {
TimeSeriesHeader input_header;
MP_RETURN_IF_ERROR(time_series_util::FillTimeSeriesHeaderIfValid(
cc->Inputs().Index(0).Header(), &input_header));
auto output_header = new TimeSeriesHeader(input_header);
MP_RETURN_IF_ERROR(MutateHeader(output_header));
cc->Outputs().Index(0).SetHeader(Adopt(output_header));
cc->SetOffset(0);
return absl::OkStatus();
}
absl::Status BasicTimeSeriesCalculatorBase::Process(CalculatorContext* cc) {
const Matrix& input = cc->Inputs().Index(0).Get<Matrix>();
MP_RETURN_IF_ERROR(time_series_util::IsMatrixShapeConsistentWithHeader(
input, cc->Inputs().Index(0).Header().Get<TimeSeriesHeader>()));
std::unique_ptr<Matrix> output(new Matrix(ProcessMatrix(input)));
MP_RETURN_IF_ERROR(time_series_util::IsMatrixShapeConsistentWithHeader(
*output, cc->Outputs().Index(0).Header().Get<TimeSeriesHeader>()));
cc->Outputs().Index(0).Add(output.release(), cc->InputTimestamp());
return absl::OkStatus();
}
absl::Status BasicTimeSeriesCalculatorBase::MutateHeader(
TimeSeriesHeader* output_header) {
return absl::OkStatus();
}
// Calculator to sum an input time series across channels. This is
// useful for e.g. computing 'summary SAI' pitchogram features.
//
// Options proto: None.
class SumTimeSeriesAcrossChannelsCalculator
: public BasicTimeSeriesCalculatorBase {
protected:
absl::Status MutateHeader(TimeSeriesHeader* output_header) final {
output_header->set_num_channels(1);
return absl::OkStatus();
}
Matrix ProcessMatrix(const Matrix& input_matrix) final {
return input_matrix.colwise().sum();
}
};
REGISTER_CALCULATOR(SumTimeSeriesAcrossChannelsCalculator);
// Calculator to average an input time series across channels. This is
// useful for e.g. converting stereo or multi-channel files to mono.
//
// Options proto: None.
class AverageTimeSeriesAcrossChannelsCalculator
: public BasicTimeSeriesCalculatorBase {
protected:
absl::Status MutateHeader(TimeSeriesHeader* output_header) final {
output_header->set_num_channels(1);
return absl::OkStatus();
}
Matrix ProcessMatrix(const Matrix& input_matrix) final {
return input_matrix.colwise().mean();
}
};
REGISTER_CALCULATOR(AverageTimeSeriesAcrossChannelsCalculator);
// Calculator to convert a (temporal) summary SAI stream (a single-channel
// stream output by SumTimeSeriesAcrossChannelsCalculator) into pitchogram
// frames by transposing the input packets, swapping the time and channel axes.
//
// Options proto: None.
class SummarySaiToPitchogramCalculator : public BasicTimeSeriesCalculatorBase {
protected:
absl::Status MutateHeader(TimeSeriesHeader* output_header) final {
if (output_header->num_channels() != 1) {
return tool::StatusInvalid(
absl::StrCat("Expected single-channel input, got ",
output_header->num_channels()));
}
output_header->set_num_channels(output_header->num_samples());
output_header->set_num_samples(1);
output_header->set_sample_rate(output_header->packet_rate());
return absl::OkStatus();
}
Matrix ProcessMatrix(const Matrix& input_matrix) final {
return input_matrix.transpose();
}
};
REGISTER_CALCULATOR(SummarySaiToPitchogramCalculator);
// Calculator to reverse the order of channels in TimeSeries packets.
// This is useful for e.g. interfacing with the speech pipeline which uses the
// opposite convention to the hearing filterbanks.
//
// Options proto: None.
class ReverseChannelOrderCalculator : public BasicTimeSeriesCalculatorBase {
protected:
Matrix ProcessMatrix(const Matrix& input_matrix) final {
return input_matrix.colwise().reverse();
}
};
REGISTER_CALCULATOR(ReverseChannelOrderCalculator);
// Calculator to flatten all samples in a TimeSeries packet down into
// a single 'sample' vector. This is useful for e.g. stacking several
// frames of features into a single feature vector.
//
// Options proto: None.
class FlattenPacketCalculator : public BasicTimeSeriesCalculatorBase {
protected:
absl::Status MutateHeader(TimeSeriesHeader* output_header) final {
const int num_input_channels = output_header->num_channels();
const int num_input_samples = output_header->num_samples();
RET_CHECK(num_input_channels >= 0)
<< "FlattenPacketCalculator: num_input_channels < 0";
RET_CHECK(num_input_samples >= 0)
<< "FlattenPacketCalculator: num_input_samples < 0";
int output_num_channels;
RET_CHECK(SafeMultiply(num_input_channels, num_input_samples,
&output_num_channels))
<< "FlattenPacketCalculator: Multiplication failed.";
output_header->set_num_channels(output_num_channels);
output_header->set_num_samples(1);
output_header->set_sample_rate(output_header->packet_rate());
return absl::OkStatus();
}
Matrix ProcessMatrix(const Matrix& input_matrix) final {
// Flatten by interleaving channels so that full samples are
// stacked on top of each other instead of interleaving samples
// from the same channel.
Matrix output(input_matrix.size(), 1);
for (int sample = 0; sample < input_matrix.cols(); ++sample) {
output.middleRows(sample * input_matrix.rows(), input_matrix.rows()) =
input_matrix.col(sample);
}
return output;
}
};
REGISTER_CALCULATOR(FlattenPacketCalculator);
// Calculator to subtract the within-packet mean for each channel from each
// corresponding channel.
//
// Options proto: None.
class SubtractMeanCalculator : public BasicTimeSeriesCalculatorBase {
protected:
Matrix ProcessMatrix(const Matrix& input_matrix) final {
Matrix mean = input_matrix.rowwise().mean();
return input_matrix - mean.replicate(1, input_matrix.cols());
}
};
REGISTER_CALCULATOR(SubtractMeanCalculator);
// Calculator to subtract the mean over all values (across all times and
// channels) in a Packet from the values in that Packet.
//
// Options proto: None.
class SubtractMeanAcrossChannelsCalculator
: public BasicTimeSeriesCalculatorBase {
protected:
Matrix ProcessMatrix(const Matrix& input_matrix) final {
auto mean = input_matrix.mean();
return (input_matrix.array() - mean).matrix();
}
};
REGISTER_CALCULATOR(SubtractMeanAcrossChannelsCalculator);
// Calculator to divide all values in a Packet by the average value across all
// times and channels in the packet. This is useful for normalizing
// nonnegative quantities like power, but might cause unexpected results if used
// with Packets that can contain negative numbers.
//
// If mean is exactly zero, the output will be a matrix of all ones, because
// that's what happens in other cases where all values are equal.
//
// Options proto: None.
class DivideByMeanAcrossChannelsCalculator
: public BasicTimeSeriesCalculatorBase {
protected:
Matrix ProcessMatrix(const Matrix& input_matrix) final {
auto mean = input_matrix.mean();
if (mean != 0) {
return input_matrix / mean;
// When used with nonnegative matrices, the mean will only be zero if the
// entire matrix is exactly zero. If mean is exactly zero, the output will
// be a matrix of all ones, because that's what happens in other cases
// where
// all values are equal.
} else {
return Matrix::Ones(input_matrix.rows(), input_matrix.cols());
}
}
};
REGISTER_CALCULATOR(DivideByMeanAcrossChannelsCalculator);
// Calculator to calculate the mean for each channel.
//
// Options proto: None.
class MeanCalculator : public BasicTimeSeriesCalculatorBase {
protected:
absl::Status MutateHeader(TimeSeriesHeader* output_header) final {
output_header->set_num_samples(1);
output_header->set_sample_rate(output_header->packet_rate());
return absl::OkStatus();
}
Matrix ProcessMatrix(const Matrix& input_matrix) final {
return input_matrix.rowwise().mean();
}
};
REGISTER_CALCULATOR(MeanCalculator);
// Calculator to calculate the uncorrected sample standard deviation in each
// channel, independently for each Packet. I.e. divide by the number of samples
// in the Packet, not (<number of samples> - 1).
//
// Options proto: None.
class StandardDeviationCalculator : public BasicTimeSeriesCalculatorBase {
protected:
absl::Status MutateHeader(TimeSeriesHeader* output_header) final {
output_header->set_num_samples(1);
output_header->set_sample_rate(output_header->packet_rate());
return absl::OkStatus();
}
Matrix ProcessMatrix(const Matrix& input_matrix) final {
Eigen::VectorXf mean = input_matrix.rowwise().mean();
return (input_matrix.colwise() - mean).rowwise().norm() /
sqrt(input_matrix.cols());
}
};
REGISTER_CALCULATOR(StandardDeviationCalculator);
// Calculator to calculate the covariance matrix. If the input matrix
// has N channels, the output matrix will be an N by N symmetric
// matrix.
//
// Options proto: None.
class CovarianceCalculator : public BasicTimeSeriesCalculatorBase {
protected:
absl::Status MutateHeader(TimeSeriesHeader* output_header) final {
output_header->set_num_samples(output_header->num_channels());
return absl::OkStatus();
}
Matrix ProcessMatrix(const Matrix& input_matrix) final {
auto mean = input_matrix.rowwise().mean();
auto zero_mean_input =
input_matrix - mean.replicate(1, input_matrix.cols());
return (zero_mean_input * zero_mean_input.transpose()) /
input_matrix.cols();
}
};
REGISTER_CALCULATOR(CovarianceCalculator);
// Calculator to get the per column L2 norm of an input time series.
//
// Options proto: None.
class L2NormCalculator : public BasicTimeSeriesCalculatorBase {
protected:
absl::Status MutateHeader(TimeSeriesHeader* output_header) final {
output_header->set_num_channels(1);
return absl::OkStatus();
}
Matrix ProcessMatrix(const Matrix& input_matrix) final {
return input_matrix.colwise().norm();
}
};
REGISTER_CALCULATOR(L2NormCalculator);
// Calculator to convert each column of a matrix to a unit vector.
//
// Options proto: None.
class L2NormalizeColumnCalculator : public BasicTimeSeriesCalculatorBase {
protected:
Matrix ProcessMatrix(const Matrix& input_matrix) final {
return input_matrix.colwise().normalized();
}
};
REGISTER_CALCULATOR(L2NormalizeColumnCalculator);
// Calculator to apply L2 normalization to the input matrix.
//
// Returns the matrix as is if the RMS is <= 1E-8.
// Options proto: None.
class L2NormalizeCalculator : public BasicTimeSeriesCalculatorBase {
protected:
Matrix ProcessMatrix(const Matrix& input_matrix) final {
constexpr double kEpsilon = 1e-8;
double rms = std::sqrt(input_matrix.array().square().mean());
if (rms <= kEpsilon) {
return input_matrix;
}
return input_matrix / rms;
}
};
REGISTER_CALCULATOR(L2NormalizeCalculator);
// Calculator to apply Peak normalization to the input matrix.
//
// Returns the matrix as is if the peak is <= 1E-8.
// Options proto: None.
class PeakNormalizeCalculator : public BasicTimeSeriesCalculatorBase {
protected:
Matrix ProcessMatrix(const Matrix& input_matrix) final {
constexpr double kEpsilon = 1e-8;
double max_pcm = input_matrix.cwiseAbs().maxCoeff();
if (max_pcm <= kEpsilon) {
return input_matrix;
}
return input_matrix / max_pcm;
}
};
REGISTER_CALCULATOR(PeakNormalizeCalculator);
// Calculator to compute the elementwise square of an input time series.
//
// Options proto: None.
class ElementwiseSquareCalculator : public BasicTimeSeriesCalculatorBase {
protected:
Matrix ProcessMatrix(const Matrix& input_matrix) final {
return input_matrix.array().square();
}
};
REGISTER_CALCULATOR(ElementwiseSquareCalculator);
// Calculator that outputs first floor(num_samples / 2) of the samples.
//
// Options proto: None.
class FirstHalfSlicerCalculator : public BasicTimeSeriesCalculatorBase {
protected:
absl::Status MutateHeader(TimeSeriesHeader* output_header) final {
const int num_input_samples = output_header->num_samples();
RET_CHECK(num_input_samples >= 0)
<< "FirstHalfSlicerCalculator: num_input_samples < 0";
output_header->set_num_samples(num_input_samples / 2);
return absl::OkStatus();
}
Matrix ProcessMatrix(const Matrix& input_matrix) final {
return input_matrix.block(0, 0, input_matrix.rows(),
input_matrix.cols() / 2);
}
};
REGISTER_CALCULATOR(FirstHalfSlicerCalculator);
} // namespace mediapipe