301 lines
10 KiB
C++
301 lines
10 KiB
C++
// Copyright 2019 The MediaPipe Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "mediapipe/framework/tool/simulation_clock.h"
|
|
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "absl/memory/memory.h"
|
|
#include "mediapipe/framework/calculator_framework.h"
|
|
#include "mediapipe/framework/executor.h"
|
|
#include "mediapipe/framework/input_stream.h"
|
|
#include "mediapipe/framework/output_stream.h"
|
|
#include "mediapipe/framework/port/core_proto_inc.h"
|
|
#include "mediapipe/framework/port/gmock.h"
|
|
#include "mediapipe/framework/port/gtest.h"
|
|
#include "mediapipe/framework/port/logging.h"
|
|
#include "mediapipe/framework/port/parse_text_proto.h"
|
|
#include "mediapipe/framework/port/status.h"
|
|
#include "mediapipe/framework/port/status_matchers.h"
|
|
#include "mediapipe/framework/tool/simulation_clock_executor.h"
|
|
|
|
using testing::ElementsAre;
|
|
|
|
namespace mediapipe {
|
|
|
|
namespace {
|
|
|
|
class SimulationClockTest : public ::testing::Test {
|
|
protected:
|
|
void SetUpInFlightGraph() {
|
|
graph_config_ = ParseTextProtoOrDie<CalculatorGraphConfig>(R"pb(
|
|
input_stream: "input_packets_0"
|
|
node {
|
|
calculator: 'FlowLimiterCalculator'
|
|
input_stream_handler {
|
|
input_stream_handler: 'ImmediateInputStreamHandler'
|
|
}
|
|
input_side_packet: 'MAX_IN_FLIGHT:max_in_flight'
|
|
input_stream: 'input_packets_0'
|
|
input_stream: 'FINISHED:finish_indicator'
|
|
input_stream_info: { tag_index: 'FINISHED' back_edge: true }
|
|
output_stream: 'input_0_sampled'
|
|
}
|
|
node {
|
|
calculator: "RoundRobinDemuxCalculator"
|
|
input_stream: "input_0_sampled"
|
|
output_stream: "OUTPUT:0:input_0"
|
|
output_stream: "OUTPUT:1:input_1"
|
|
}
|
|
node {
|
|
calculator: "LambdaCalculator"
|
|
input_side_packet: 'callback_0'
|
|
input_stream: "input_0"
|
|
output_stream: "output_0"
|
|
}
|
|
node {
|
|
calculator: "LambdaCalculator"
|
|
input_side_packet: 'callback_1'
|
|
input_stream: "input_1"
|
|
output_stream: "output_1"
|
|
}
|
|
node {
|
|
calculator: "ImmediateMuxCalculator"
|
|
input_stream_handler {
|
|
input_stream_handler: "ImmediateInputStreamHandler"
|
|
}
|
|
input_stream: "output_0"
|
|
input_stream: "output_1"
|
|
output_stream: 'output_packets_0'
|
|
output_stream: 'finish_indicator'
|
|
}
|
|
)pb");
|
|
}
|
|
|
|
// Initialize the test clock as a SimulationClock.
|
|
void SetupSimulationClock() {
|
|
auto executor = std::make_shared<SimulationClockExecutor>(4);
|
|
simulation_clock_ = executor->GetClock();
|
|
clock_ = simulation_clock_.get();
|
|
MP_ASSERT_OK(graph_.SetExecutor("", executor));
|
|
}
|
|
|
|
// Initialize the test clock as a RealClock.
|
|
void SetupRealClock() { clock_ = mediapipe::Clock::RealClock(); }
|
|
|
|
// Return the values of the timestamps of a vector of Packets.
|
|
static std::vector<int64> TimestampValues(
|
|
const std::vector<Packet>& packets) {
|
|
std::vector<int64> result;
|
|
for (const Packet& p : packets) {
|
|
result.push_back(p.Timestamp().Value());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static std::vector<int64> TimeValues(const std::vector<absl::Time>& times) {
|
|
std::vector<int64> result;
|
|
for (const absl::Time& t : times) {
|
|
result.push_back(absl::ToUnixMicros(t));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::shared_ptr<SimulationClock> simulation_clock_;
|
|
CalculatorGraphConfig graph_config_;
|
|
CalculatorGraph graph_;
|
|
mediapipe::Clock* clock_;
|
|
};
|
|
|
|
// Just directly calls SimulationClock::Sleep on several threads.
|
|
TEST_F(SimulationClockTest, SleepUntil) {
|
|
std::vector<absl::Time> start_times;
|
|
auto executor = std::make_shared<SimulationClockExecutor>(4);
|
|
simulation_clock_ = executor->GetClock();
|
|
clock_ = simulation_clock_.get();
|
|
|
|
std::function<void(int)> run_chain = [&](int count) {
|
|
if (count > 0) {
|
|
start_times.push_back(clock_->TimeNow());
|
|
clock_->Sleep(absl::Microseconds(10000));
|
|
run_chain(count - 1);
|
|
}
|
|
};
|
|
simulation_clock_->ThreadStart();
|
|
for (int i = 0; i < 3; i++) {
|
|
executor->Schedule([&] { run_chain(3); });
|
|
clock_->Sleep(absl::Microseconds(2000));
|
|
}
|
|
clock_->Sleep(absl::Microseconds(100000));
|
|
simulation_clock_->ThreadFinish();
|
|
EXPECT_THAT(
|
|
TimeValues(start_times), //
|
|
ElementsAre(0, 2000, 4000, 10000, 12000, 14000, 20000, 22000, 24000));
|
|
}
|
|
|
|
// Directly calls SimulationClock::Sleep with duplicate wake times.
|
|
TEST_F(SimulationClockTest, DuplicateWakeTimes) {
|
|
std::vector<absl::Time> start_times;
|
|
std::vector<int> start_counts;
|
|
auto executor = std::make_shared<SimulationClockExecutor>(4);
|
|
simulation_clock_ = executor->GetClock();
|
|
clock_ = simulation_clock_.get();
|
|
std::function<void(int)> run_chain = [&](int count) {
|
|
if (count > 0) {
|
|
start_times.push_back(clock_->TimeNow());
|
|
start_counts.push_back(count);
|
|
clock_->Sleep(absl::Microseconds(10000));
|
|
run_chain(count - 1);
|
|
}
|
|
};
|
|
simulation_clock_->ThreadStart();
|
|
for (int i = 0; i < 3; i++) {
|
|
executor->Schedule([&] { run_chain(3); });
|
|
clock_->Sleep(absl::Microseconds(10000));
|
|
}
|
|
clock_->Sleep(absl::Microseconds(100000));
|
|
simulation_clock_->ThreadFinish();
|
|
EXPECT_THAT(
|
|
TimeValues(start_times),
|
|
ElementsAre(0, 10000, 10000, 20000, 20000, 20000, 30000, 30000, 40000));
|
|
EXPECT_THAT(start_counts, ElementsAre(3, 2, 3, 1, 2, 3, 1, 2, 1));
|
|
}
|
|
|
|
// A Calculator::Process callback function.
|
|
typedef std::function<absl::Status(const InputStreamShardSet&,
|
|
OutputStreamShardSet*)>
|
|
ProcessFunction;
|
|
|
|
// A testing callback function that passes through all packets.
|
|
absl::Status PassThrough(const InputStreamShardSet& inputs,
|
|
OutputStreamShardSet* outputs) {
|
|
for (int i = 0; i < inputs.NumEntries(); ++i) {
|
|
if (!inputs.Index(i).Value().IsEmpty()) {
|
|
outputs->Index(i).AddPacket(inputs.Index(i).Value());
|
|
}
|
|
}
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
// This test shows sim clock synchronizing a bunch of parallel tasks.
|
|
TEST_F(SimulationClockTest, InFlight) {
|
|
// Callbacks to control the MockCalculators.
|
|
// SetupSimulationClock can be replaced by SetupRealClock to run
|
|
// the test over 200 ms of real time rather simulated time.
|
|
SetupSimulationClock();
|
|
ProcessFunction wait_0 = [&](const InputStreamShardSet& inputs,
|
|
OutputStreamShardSet* outputs) {
|
|
clock_->Sleep(absl::Microseconds(20000));
|
|
return PassThrough(inputs, outputs);
|
|
};
|
|
ProcessFunction wait_1 = [&](const InputStreamShardSet& inputs,
|
|
OutputStreamShardSet* outputs) {
|
|
clock_->Sleep(absl::Microseconds(30000));
|
|
return PassThrough(inputs, outputs);
|
|
};
|
|
|
|
// Start the graph with the callbacks.
|
|
SetUpInFlightGraph();
|
|
std::vector<Packet> out_packets;
|
|
tool::AddVectorSink("output_packets_0", &graph_config_, &out_packets);
|
|
MP_ASSERT_OK(graph_.Initialize(graph_config_,
|
|
{
|
|
{"max_in_flight", MakePacket<int>(2)},
|
|
{"callback_0", Adopt(new auto(wait_0))},
|
|
{"callback_1", Adopt(new auto(wait_1))},
|
|
}));
|
|
MP_ASSERT_OK(graph_.StartRun({}));
|
|
simulation_clock_->ThreadStart();
|
|
|
|
// Add 10 input packets to the graph, one each 10 ms, starting after 11 ms
|
|
// of clock time. Timestamps lag clock times by 1 ms.
|
|
clock_->Sleep(absl::Microseconds(11000));
|
|
for (uint64 ts = 10000; ts <= 100000; ts += 10000) {
|
|
MP_EXPECT_OK(graph_.AddPacketToInputStream(
|
|
"input_packets_0", MakePacket<uint64>(ts).At(Timestamp(ts))));
|
|
clock_->Sleep(absl::Microseconds(10000));
|
|
}
|
|
|
|
// Wait for 100 ms of clock time, then close the graph.
|
|
clock_->Sleep(absl::Microseconds(100000));
|
|
simulation_clock_->ThreadFinish();
|
|
MP_ASSERT_OK(graph_.CloseAllInputStreams());
|
|
MP_ASSERT_OK(graph_.WaitUntilDone());
|
|
|
|
// Validate the graph run.
|
|
EXPECT_THAT(TimestampValues(out_packets),
|
|
ElementsAre(10000, 20000, 40000, 60000, 70000, 100000));
|
|
}
|
|
|
|
// Shows successful destruction of CalculatorGraph, SimulationClockExecutor,
|
|
// and SimulationClock. With tsan, this test reveals a race condition unless
|
|
// the SimulationClock destructor calls ThreadFinish to waits for all threads.
|
|
TEST_F(SimulationClockTest, DestroyClock) {
|
|
auto graph_config = ParseTextProtoOrDie<CalculatorGraphConfig>(R"pb(
|
|
node {
|
|
calculator: "LambdaCalculator"
|
|
input_side_packet: 'callback_0'
|
|
output_stream: "input_1"
|
|
}
|
|
node {
|
|
calculator: "LambdaCalculator"
|
|
input_side_packet: 'callback_1'
|
|
input_stream: "input_1"
|
|
output_stream: "output_1"
|
|
}
|
|
)pb");
|
|
|
|
int input_count = 0;
|
|
ProcessFunction wait_0 = [&](const InputStreamShardSet& inputs,
|
|
OutputStreamShardSet* outputs) {
|
|
clock_->Sleep(absl::Microseconds(20000));
|
|
if (++input_count < 4) {
|
|
outputs->Index(0).AddPacket(
|
|
MakePacket<uint64>(input_count).At(Timestamp(input_count)));
|
|
return absl::OkStatus();
|
|
} else {
|
|
return tool::StatusStop();
|
|
}
|
|
};
|
|
ProcessFunction wait_1 = [&](const InputStreamShardSet& inputs,
|
|
OutputStreamShardSet* outputs) {
|
|
clock_->Sleep(absl::Microseconds(30000));
|
|
return PassThrough(inputs, outputs);
|
|
};
|
|
|
|
std::vector<Packet> out_packets;
|
|
absl::Status status;
|
|
{
|
|
CalculatorGraph graph;
|
|
auto executor = std::make_shared<SimulationClockExecutor>(4);
|
|
clock_ = executor->GetClock().get();
|
|
MP_ASSERT_OK(graph.SetExecutor("", executor));
|
|
tool::AddVectorSink("output_1", &graph_config, &out_packets);
|
|
MP_ASSERT_OK(graph.Initialize(graph_config,
|
|
{
|
|
{"callback_0", Adopt(new auto(wait_0))},
|
|
{"callback_1", Adopt(new auto(wait_1))},
|
|
}));
|
|
MP_EXPECT_OK(graph.Run());
|
|
}
|
|
EXPECT_EQ(out_packets.size(), 3);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace mediapipe
|