950 lines
42 KiB
C++
950 lines
42 KiB
C++
/* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "mediapipe/tasks/cc/components/processors/detection_postprocessing_graph.h"
|
|
|
|
#include <optional>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "absl/container/flat_hash_set.h"
|
|
#include "absl/log/absl_log.h"
|
|
#include "absl/status/status.h"
|
|
#include "absl/status/statusor.h"
|
|
#include "absl/strings/str_format.h"
|
|
#include "absl/strings/string_view.h"
|
|
#include "mediapipe/calculators/core/split_vector_calculator.pb.h"
|
|
#include "mediapipe/calculators/tensor/tensors_to_detections_calculator.pb.h"
|
|
#include "mediapipe/calculators/tflite/ssd_anchors_calculator.pb.h"
|
|
#include "mediapipe/calculators/util/detection_label_id_to_text_calculator.pb.h"
|
|
#include "mediapipe/calculators/util/non_max_suppression_calculator.pb.h"
|
|
#include "mediapipe/framework/api2/builder.h"
|
|
#include "mediapipe/framework/api2/port.h"
|
|
#include "mediapipe/framework/calculator.pb.h"
|
|
#include "mediapipe/framework/calculator_framework.h"
|
|
#include "mediapipe/framework/formats/detection.pb.h"
|
|
#include "mediapipe/framework/formats/object_detection/anchor.pb.h"
|
|
#include "mediapipe/framework/formats/tensor.h"
|
|
#include "mediapipe/tasks/cc/common.h"
|
|
#include "mediapipe/tasks/cc/components/calculators/score_calibration_calculator.pb.h"
|
|
#include "mediapipe/tasks/cc/components/calculators/score_calibration_utils.h"
|
|
#include "mediapipe/tasks/cc/components/processors/proto/detection_postprocessing_graph_options.pb.h"
|
|
#include "mediapipe/tasks/cc/components/processors/proto/detector_options.pb.h"
|
|
#include "mediapipe/tasks/cc/core/model_resources.h"
|
|
#include "mediapipe/tasks/cc/core/utils.h"
|
|
#include "mediapipe/tasks/cc/metadata/metadata_extractor.h"
|
|
#include "mediapipe/tasks/metadata/metadata_schema_generated.h"
|
|
#include "mediapipe/tasks/metadata/object_detector_metadata_schema_generated.h"
|
|
#include "mediapipe/util/label_map.pb.h"
|
|
#include "mediapipe/util/label_map_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace mediapipe {
|
|
namespace tasks {
|
|
namespace components {
|
|
namespace processors {
|
|
|
|
namespace {
|
|
|
|
using ::flatbuffers::Offset;
|
|
using ::flatbuffers::Vector;
|
|
using ::mediapipe::api2::Input;
|
|
using ::mediapipe::api2::Output;
|
|
using ::mediapipe::api2::builder::Graph;
|
|
using ::mediapipe::api2::builder::Source;
|
|
using ::mediapipe::tasks::metadata::ModelMetadataExtractor;
|
|
using ::tflite::BoundingBoxProperties;
|
|
using ::tflite::ContentProperties;
|
|
using ::tflite::ContentProperties_BoundingBoxProperties;
|
|
using ::tflite::EnumNameContentProperties;
|
|
using ::tflite::ProcessUnit;
|
|
using ::tflite::ProcessUnitOptions_ScoreThresholdingOptions;
|
|
using ::tflite::TensorMetadata;
|
|
using LabelItems = mediapipe::proto_ns::Map<int64_t, ::mediapipe::LabelMapItem>;
|
|
using TensorsSource =
|
|
mediapipe::api2::builder::Source<std::vector<mediapipe::Tensor>>;
|
|
|
|
constexpr int kInModelNmsDefaultLocationsIndex = 0;
|
|
constexpr int kInModelNmsDefaultCategoriesIndex = 1;
|
|
constexpr int kInModelNmsDefaultScoresIndex = 2;
|
|
constexpr int kInModelNmsDefaultNumResultsIndex = 3;
|
|
|
|
constexpr int kOutModelNmsDefaultLocationsIndex = 0;
|
|
constexpr int kOutModelNmsDefaultScoresIndex = 1;
|
|
|
|
constexpr float kDefaultScoreThreshold = std::numeric_limits<float>::lowest();
|
|
|
|
constexpr absl::string_view kLocationTensorName = "location";
|
|
constexpr absl::string_view kCategoryTensorName = "category";
|
|
constexpr absl::string_view kScoreTensorName = "score";
|
|
constexpr absl::string_view kNumberOfDetectionsTensorName =
|
|
"number of detections";
|
|
constexpr absl::string_view kDetectorMetadataName = "DETECTOR_METADATA";
|
|
constexpr absl::string_view kCalibratedScoresTag = "CALIBRATED_SCORES";
|
|
constexpr absl::string_view kDetectionsTag = "DETECTIONS";
|
|
constexpr absl::string_view kIndicesTag = "INDICES";
|
|
constexpr absl::string_view kScoresTag = "SCORES";
|
|
constexpr absl::string_view kTensorsTag = "TENSORS";
|
|
constexpr absl::string_view kAnchorsTag = "ANCHORS";
|
|
|
|
// Struct holding the different output streams produced by the graph.
|
|
struct DetectionPostprocessingOutputStreams {
|
|
Source<std::vector<Detection>> detections;
|
|
};
|
|
|
|
// Parameters used for configuring the post-processing calculators.
|
|
struct PostProcessingSpecs {
|
|
// The maximum number of detection results to return.
|
|
int max_results;
|
|
// Indices of the output tensors to match the output tensors to the correct
|
|
// index order of the output tensors: [location, categories, scores,
|
|
// num_detections].
|
|
std::vector<int> output_tensor_indices;
|
|
// For each pack of 4 coordinates returned by the model, this denotes the
|
|
// order in which to get the left, top, right and bottom coordinates.
|
|
std::vector<unsigned int> bounding_box_corners_order;
|
|
// This is populated by reading the label files from the TFLite Model
|
|
// Metadata: if no such files are available, this is left empty and the
|
|
// ObjectDetector will only be able to populate the `index` field of the
|
|
// detection results.
|
|
LabelItems label_items;
|
|
// Score threshold. Detections with a confidence below this value are
|
|
// discarded. If none is provided via metadata or options, -FLT_MAX is set as
|
|
// default value.
|
|
float score_threshold;
|
|
// Set of category indices to be allowed/denied.
|
|
absl::flat_hash_set<int> allow_or_deny_categories;
|
|
// Indicates `allow_or_deny_categories` is an allowlist or a denylist.
|
|
bool is_allowlist;
|
|
// Score calibration options, if any.
|
|
std::optional<ScoreCalibrationCalculatorOptions> score_calibration_options;
|
|
};
|
|
|
|
absl::Status SanityCheckOptions(const proto::DetectorOptions& options) {
|
|
if (options.max_results() == 0) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
"Invalid `max_results` option: value must be != 0",
|
|
MediaPipeTasksStatus::kInvalidArgumentError);
|
|
}
|
|
if (options.category_allowlist_size() > 0 &&
|
|
options.category_denylist_size() > 0) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
"`category_allowlist` and `category_denylist` are mutually "
|
|
"exclusive options.",
|
|
MediaPipeTasksStatus::kInvalidArgumentError);
|
|
}
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::StatusOr<const BoundingBoxProperties*> GetBoundingBoxProperties(
|
|
const TensorMetadata& tensor_metadata) {
|
|
if (tensor_metadata.content() == nullptr ||
|
|
tensor_metadata.content()->content_properties() == nullptr) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat(
|
|
"Expected BoundingBoxProperties for tensor %s, found none.",
|
|
tensor_metadata.name() ? tensor_metadata.name()->str() : "#0"),
|
|
MediaPipeTasksStatus::kMetadataInvalidContentPropertiesError);
|
|
}
|
|
|
|
ContentProperties type = tensor_metadata.content()->content_properties_type();
|
|
if (type != ContentProperties_BoundingBoxProperties) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat(
|
|
"Expected BoundingBoxProperties for tensor %s, found %s.",
|
|
tensor_metadata.name() ? tensor_metadata.name()->str() : "#0",
|
|
EnumNameContentProperties(type)),
|
|
MediaPipeTasksStatus::kMetadataInvalidContentPropertiesError);
|
|
}
|
|
|
|
const BoundingBoxProperties* properties =
|
|
tensor_metadata.content()->content_properties_as_BoundingBoxProperties();
|
|
|
|
// Mobile SSD only supports "BOUNDARIES" bounding box type.
|
|
if (properties->type() != tflite::BoundingBoxType_BOUNDARIES) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat(
|
|
"Mobile SSD only supports BoundingBoxType BOUNDARIES, found %s",
|
|
tflite::EnumNameBoundingBoxType(properties->type())),
|
|
MediaPipeTasksStatus::kMetadataInvalidContentPropertiesError);
|
|
}
|
|
|
|
// Mobile SSD only supports "RATIO" coordinates type.
|
|
if (properties->coordinate_type() != tflite::CoordinateType_RATIO) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat(
|
|
"Mobile SSD only supports CoordinateType RATIO, found %s",
|
|
tflite::EnumNameCoordinateType(properties->coordinate_type())),
|
|
MediaPipeTasksStatus::kMetadataInvalidContentPropertiesError);
|
|
}
|
|
|
|
// Index is optional, but must contain 4 values if present.
|
|
if (properties->index() != nullptr && properties->index()->size() != 4) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat(
|
|
"Expected BoundingBoxProperties index to contain 4 values, found "
|
|
"%d",
|
|
properties->index()->size()),
|
|
MediaPipeTasksStatus::kMetadataInvalidContentPropertiesError);
|
|
}
|
|
|
|
return properties;
|
|
}
|
|
|
|
absl::StatusOr<LabelItems> GetLabelItemsIfAny(
|
|
const ModelMetadataExtractor& metadata_extractor,
|
|
const TensorMetadata& tensor_metadata,
|
|
tflite::AssociatedFileType associated_file_type, absl::string_view locale) {
|
|
const std::string labels_filename =
|
|
ModelMetadataExtractor::FindFirstAssociatedFileName(tensor_metadata,
|
|
associated_file_type);
|
|
if (labels_filename.empty()) {
|
|
LabelItems empty_label_items;
|
|
return empty_label_items;
|
|
}
|
|
MP_ASSIGN_OR_RETURN(absl::string_view labels_file,
|
|
metadata_extractor.GetAssociatedFile(labels_filename));
|
|
const std::string display_names_filename =
|
|
ModelMetadataExtractor::FindFirstAssociatedFileName(
|
|
tensor_metadata, associated_file_type, locale);
|
|
absl::string_view display_names_file;
|
|
if (!display_names_filename.empty()) {
|
|
MP_ASSIGN_OR_RETURN(
|
|
display_names_file,
|
|
metadata_extractor.GetAssociatedFile(display_names_filename));
|
|
}
|
|
return mediapipe::BuildLabelMapFromFiles(labels_file, display_names_file);
|
|
}
|
|
|
|
absl::StatusOr<float> GetScoreThreshold(
|
|
const ModelMetadataExtractor& metadata_extractor,
|
|
const TensorMetadata& tensor_metadata) {
|
|
MP_ASSIGN_OR_RETURN(
|
|
const ProcessUnit* score_thresholding_process_unit,
|
|
metadata_extractor.FindFirstProcessUnit(
|
|
tensor_metadata, ProcessUnitOptions_ScoreThresholdingOptions));
|
|
if (score_thresholding_process_unit == nullptr) {
|
|
return kDefaultScoreThreshold;
|
|
}
|
|
return score_thresholding_process_unit->options_as_ScoreThresholdingOptions()
|
|
->global_score_threshold();
|
|
}
|
|
|
|
absl::StatusOr<absl::flat_hash_set<int>> GetAllowOrDenyCategoryIndicesIfAny(
|
|
const proto::DetectorOptions& config, const LabelItems& label_items) {
|
|
absl::flat_hash_set<int> category_indices;
|
|
// Exit early if no denylist/allowlist.
|
|
if (config.category_denylist_size() == 0 &&
|
|
config.category_allowlist_size() == 0) {
|
|
return category_indices;
|
|
}
|
|
if (label_items.empty()) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
"Using `category_allowlist` or `category_denylist` requires "
|
|
"labels to be present in the TFLite Model Metadata but none was found.",
|
|
MediaPipeTasksStatus::kMetadataMissingLabelsError);
|
|
}
|
|
const auto& category_list = config.category_allowlist_size() > 0
|
|
? config.category_allowlist()
|
|
: config.category_denylist();
|
|
for (const auto& category_name : category_list) {
|
|
int index = -1;
|
|
for (int i = 0; i < label_items.size(); ++i) {
|
|
if (label_items.at(i).name() == category_name) {
|
|
index = i;
|
|
break;
|
|
}
|
|
}
|
|
// Ignores duplicate or unknown categories.
|
|
if (index < 0) {
|
|
continue;
|
|
}
|
|
category_indices.insert(index);
|
|
}
|
|
return category_indices;
|
|
}
|
|
|
|
absl::StatusOr<std::optional<ScoreCalibrationCalculatorOptions>>
|
|
GetScoreCalibrationOptionsIfAny(
|
|
const ModelMetadataExtractor& metadata_extractor,
|
|
const TensorMetadata& tensor_metadata) {
|
|
// Get ScoreCalibrationOptions, if any.
|
|
MP_ASSIGN_OR_RETURN(
|
|
const ProcessUnit* score_calibration_process_unit,
|
|
metadata_extractor.FindFirstProcessUnit(
|
|
tensor_metadata, tflite::ProcessUnitOptions_ScoreCalibrationOptions));
|
|
if (score_calibration_process_unit == nullptr) {
|
|
return std::nullopt;
|
|
}
|
|
auto* score_calibration_options =
|
|
score_calibration_process_unit->options_as_ScoreCalibrationOptions();
|
|
// Get corresponding AssociatedFile.
|
|
auto score_calibration_filename =
|
|
metadata_extractor.FindFirstAssociatedFileName(
|
|
tensor_metadata,
|
|
tflite::AssociatedFileType_TENSOR_AXIS_SCORE_CALIBRATION);
|
|
if (score_calibration_filename.empty()) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kNotFound,
|
|
"Found ScoreCalibrationOptions but missing required associated "
|
|
"parameters file with type TENSOR_AXIS_SCORE_CALIBRATION.",
|
|
MediaPipeTasksStatus::kMetadataAssociatedFileNotFoundError);
|
|
}
|
|
MP_ASSIGN_OR_RETURN(
|
|
absl::string_view score_calibration_file,
|
|
metadata_extractor.GetAssociatedFile(score_calibration_filename));
|
|
ScoreCalibrationCalculatorOptions score_calibration_calculator_options;
|
|
MP_RETURN_IF_ERROR(ConfigureScoreCalibration(
|
|
score_calibration_options->score_transformation(),
|
|
score_calibration_options->default_score(), score_calibration_file,
|
|
&score_calibration_calculator_options));
|
|
return score_calibration_calculator_options;
|
|
}
|
|
|
|
absl::StatusOr<std::vector<int>> GetOutputTensorIndices(
|
|
const Vector<Offset<TensorMetadata>>* tensor_metadatas) {
|
|
std::vector<int> output_indices;
|
|
if (tensor_metadatas->size() == 4) {
|
|
output_indices = {
|
|
core::FindTensorIndexByMetadataName(tensor_metadatas,
|
|
kLocationTensorName),
|
|
core::FindTensorIndexByMetadataName(tensor_metadatas,
|
|
kCategoryTensorName),
|
|
core::FindTensorIndexByMetadataName(tensor_metadatas, kScoreTensorName),
|
|
core::FindTensorIndexByMetadataName(tensor_metadatas,
|
|
kNumberOfDetectionsTensorName)};
|
|
// locations, categories, scores, and number of detections
|
|
for (int i = 0; i < 4; i++) {
|
|
int output_index = output_indices[i];
|
|
// If tensor name is not found, set the default output indices.
|
|
if (output_index == -1) {
|
|
ABSL_LOG(WARNING) << absl::StrFormat(
|
|
"You don't seem to be matching tensor names in metadata list. The "
|
|
"tensor name \"%s\" at index %d in the model metadata doesn't "
|
|
"match "
|
|
"the available output names: [\"%s\", \"%s\", \"%s\", \"%s\"].",
|
|
tensor_metadatas->Get(i)->name()->c_str(), i, kLocationTensorName,
|
|
kCategoryTensorName, kScoreTensorName,
|
|
kNumberOfDetectionsTensorName);
|
|
output_indices = {
|
|
kInModelNmsDefaultLocationsIndex, kInModelNmsDefaultCategoriesIndex,
|
|
kInModelNmsDefaultScoresIndex, kInModelNmsDefaultNumResultsIndex};
|
|
return output_indices;
|
|
}
|
|
}
|
|
} else if (tensor_metadatas->size() == 2) {
|
|
output_indices = {core::FindTensorIndexByMetadataName(tensor_metadatas,
|
|
kLocationTensorName),
|
|
core::FindTensorIndexByMetadataName(tensor_metadatas,
|
|
kScoreTensorName)};
|
|
// location, score
|
|
for (int i = 0; i < 2; i++) {
|
|
int output_index = output_indices[i];
|
|
// If tensor name is not found, set the default output indices.
|
|
if (output_index == -1) {
|
|
ABSL_LOG(WARNING) << absl::StrFormat(
|
|
"You don't seem to be matching tensor names in metadata list. The "
|
|
"tensor name \"%s\" at index %d in the model metadata doesn't "
|
|
"match "
|
|
"the available output names: [\"%s\", \"%s\"].",
|
|
tensor_metadatas->Get(i)->name()->c_str(), i, kLocationTensorName,
|
|
kScoreTensorName);
|
|
output_indices = {kOutModelNmsDefaultLocationsIndex,
|
|
kOutModelNmsDefaultScoresIndex};
|
|
return output_indices;
|
|
}
|
|
}
|
|
} else {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat(
|
|
"Expected a model with 2 or 4 output tensors metadata, found %d.",
|
|
tensor_metadatas->size()),
|
|
MediaPipeTasksStatus::kInvalidArgumentError);
|
|
}
|
|
return output_indices;
|
|
}
|
|
|
|
// Builds PostProcessingSpecs from DetectorOptions and model metadata for
|
|
// configuring the post-processing calculators.
|
|
absl::StatusOr<PostProcessingSpecs> BuildPostProcessingSpecs(
|
|
const proto::DetectorOptions& options, bool in_model_nms,
|
|
const ModelMetadataExtractor* metadata_extractor) {
|
|
const auto* output_tensors_metadata =
|
|
metadata_extractor->GetOutputTensorMetadata();
|
|
PostProcessingSpecs specs;
|
|
specs.max_results = options.max_results();
|
|
MP_ASSIGN_OR_RETURN(specs.output_tensor_indices,
|
|
GetOutputTensorIndices(output_tensors_metadata));
|
|
// Extracts mandatory BoundingBoxProperties and performs sanity checks on the
|
|
// fly.
|
|
MP_ASSIGN_OR_RETURN(const BoundingBoxProperties* bounding_box_properties,
|
|
GetBoundingBoxProperties(*output_tensors_metadata->Get(
|
|
specs.output_tensor_indices[0])));
|
|
if (bounding_box_properties->index() == nullptr) {
|
|
specs.bounding_box_corners_order = {0, 1, 2, 3};
|
|
} else {
|
|
auto bounding_box_index = bounding_box_properties->index();
|
|
specs.bounding_box_corners_order = {
|
|
bounding_box_index->Get(0),
|
|
bounding_box_index->Get(1),
|
|
bounding_box_index->Get(2),
|
|
bounding_box_index->Get(3),
|
|
};
|
|
}
|
|
// Builds label map (if available) from metadata.
|
|
// For models with in-model-nms, the label map is stored in the Category
|
|
// tensor which use TENSOR_VALUE_LABELS. For models with out-of-model-nms, the
|
|
// label map is stored in the Score tensor which use TENSOR_AXIS_LABELS.
|
|
MP_ASSIGN_OR_RETURN(
|
|
specs.label_items,
|
|
GetLabelItemsIfAny(
|
|
*metadata_extractor,
|
|
*output_tensors_metadata->Get(specs.output_tensor_indices[1]),
|
|
in_model_nms ? tflite::AssociatedFileType_TENSOR_VALUE_LABELS
|
|
: tflite::AssociatedFileType_TENSOR_AXIS_LABELS,
|
|
options.display_names_locale()));
|
|
// Obtains allow/deny categories.
|
|
specs.is_allowlist = !options.category_allowlist().empty();
|
|
MP_ASSIGN_OR_RETURN(
|
|
specs.allow_or_deny_categories,
|
|
GetAllowOrDenyCategoryIndicesIfAny(options, specs.label_items));
|
|
|
|
// Sets score threshold.
|
|
if (options.has_score_threshold()) {
|
|
specs.score_threshold = options.score_threshold();
|
|
} else {
|
|
MP_ASSIGN_OR_RETURN(
|
|
specs.score_threshold,
|
|
GetScoreThreshold(
|
|
*metadata_extractor,
|
|
*output_tensors_metadata->Get(
|
|
specs.output_tensor_indices
|
|
[in_model_nms ? kInModelNmsDefaultScoresIndex
|
|
: kOutModelNmsDefaultScoresIndex])));
|
|
}
|
|
if (in_model_nms) {
|
|
// Builds score calibration options (if available) from metadata.
|
|
MP_ASSIGN_OR_RETURN(
|
|
specs.score_calibration_options,
|
|
GetScoreCalibrationOptionsIfAny(
|
|
*metadata_extractor,
|
|
*output_tensors_metadata->Get(
|
|
specs.output_tensor_indices[kInModelNmsDefaultScoresIndex])));
|
|
}
|
|
return specs;
|
|
}
|
|
|
|
// Builds PostProcessingSpecs from DetectorOptions and model metadata for
|
|
// configuring the post-processing calculators for models with
|
|
// non-maximum-suppression.
|
|
absl::StatusOr<PostProcessingSpecs> BuildInModelNmsPostProcessingSpecs(
|
|
const proto::DetectorOptions& options,
|
|
const ModelMetadataExtractor* metadata_extractor) {
|
|
// Checks output tensor metadata is present and consistent with model.
|
|
auto* output_tensors_metadata = metadata_extractor->GetOutputTensorMetadata();
|
|
if (output_tensors_metadata == nullptr ||
|
|
output_tensors_metadata->size() != 4) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat("Mismatch between number of output tensors (4) and "
|
|
"output tensors metadata (%d).",
|
|
output_tensors_metadata == nullptr
|
|
? 0
|
|
: output_tensors_metadata->size()),
|
|
MediaPipeTasksStatus::kMetadataInconsistencyError);
|
|
}
|
|
return BuildPostProcessingSpecs(options, /*in_model_nms=*/true,
|
|
metadata_extractor);
|
|
}
|
|
|
|
// Fills in the TensorsToDetectionsCalculatorOptions based on
|
|
// PostProcessingSpecs.
|
|
void ConfigureInModelNmsTensorsToDetectionsCalculator(
|
|
const PostProcessingSpecs& specs,
|
|
mediapipe::TensorsToDetectionsCalculatorOptions* options) {
|
|
options->set_num_classes(specs.label_items.size());
|
|
options->set_num_coords(4);
|
|
options->set_min_score_thresh(specs.score_threshold);
|
|
if (specs.max_results != -1) {
|
|
options->set_max_results(specs.max_results);
|
|
}
|
|
if (specs.is_allowlist) {
|
|
options->mutable_allow_classes()->Assign(
|
|
specs.allow_or_deny_categories.begin(),
|
|
specs.allow_or_deny_categories.end());
|
|
} else {
|
|
options->mutable_ignore_classes()->Assign(
|
|
specs.allow_or_deny_categories.begin(),
|
|
specs.allow_or_deny_categories.end());
|
|
}
|
|
|
|
const auto& output_indices = specs.output_tensor_indices;
|
|
// Assigns indices to each the model output tensor.
|
|
auto* tensor_mapping = options->mutable_tensor_mapping();
|
|
tensor_mapping->set_detections_tensor_index(output_indices[0]);
|
|
tensor_mapping->set_classes_tensor_index(output_indices[1]);
|
|
tensor_mapping->set_scores_tensor_index(output_indices[2]);
|
|
tensor_mapping->set_num_detections_tensor_index(output_indices[3]);
|
|
|
|
// Assigns the bounding box corner order.
|
|
auto box_boundaries_indices = options->mutable_box_boundaries_indices();
|
|
box_boundaries_indices->set_xmin(specs.bounding_box_corners_order[0]);
|
|
box_boundaries_indices->set_ymin(specs.bounding_box_corners_order[1]);
|
|
box_boundaries_indices->set_xmax(specs.bounding_box_corners_order[2]);
|
|
box_boundaries_indices->set_ymax(specs.bounding_box_corners_order[3]);
|
|
}
|
|
|
|
// Builds PostProcessingSpecs from DetectorOptions and model metadata for
|
|
// configuring the post-processing calculators for models without
|
|
// non-maximum-suppression.
|
|
absl::StatusOr<PostProcessingSpecs> BuildOutModelNmsPostProcessingSpecs(
|
|
const proto::DetectorOptions& options,
|
|
const ModelMetadataExtractor* metadata_extractor) {
|
|
// Checks output tensor metadata is present and consistent with model.
|
|
auto* output_tensors_metadata = metadata_extractor->GetOutputTensorMetadata();
|
|
if (output_tensors_metadata == nullptr ||
|
|
output_tensors_metadata->size() != 2) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat("Mismatch between number of output tensors (2) and "
|
|
"output tensors metadata (%d).",
|
|
output_tensors_metadata == nullptr
|
|
? 0
|
|
: output_tensors_metadata->size()),
|
|
MediaPipeTasksStatus::kMetadataInconsistencyError);
|
|
}
|
|
return BuildPostProcessingSpecs(options, /*in_model_nms=*/false,
|
|
metadata_extractor);
|
|
}
|
|
|
|
// Configures the TensorsToDetectionCalculator for models without
|
|
// non-maximum-suppression in tflite model. The required config parameters are
|
|
// extracted from the ObjectDetectorMetadata
|
|
// (metadata/object_detector_metadata_schema.fbs).
|
|
absl::Status ConfigureOutModelNmsTensorsToDetectionsCalculator(
|
|
const ModelMetadataExtractor* metadata_extractor,
|
|
const PostProcessingSpecs& specs,
|
|
mediapipe::TensorsToDetectionsCalculatorOptions* options) {
|
|
bool found_detector_metadata = false;
|
|
if (metadata_extractor->GetCustomMetadataList() != nullptr &&
|
|
metadata_extractor->GetCustomMetadataList()->size() > 0) {
|
|
for (const auto* custom_metadata :
|
|
*metadata_extractor->GetCustomMetadataList()) {
|
|
if (custom_metadata->name()->str() == kDetectorMetadataName) {
|
|
found_detector_metadata = true;
|
|
const auto* tensors_decoding_options =
|
|
GetObjectDetectorOptions(custom_metadata->data()->data())
|
|
->tensors_decoding_options();
|
|
// Here we don't set the max results for TensorsToDetectionsCalculator.
|
|
// For models without nms, the results are filtered by max_results in
|
|
// NonMaxSuppressionCalculator.
|
|
options->set_num_classes(tensors_decoding_options->num_classes());
|
|
options->set_num_boxes(tensors_decoding_options->num_boxes());
|
|
options->set_num_coords(tensors_decoding_options->num_coords());
|
|
options->set_keypoint_coord_offset(
|
|
tensors_decoding_options->keypoint_coord_offset());
|
|
options->set_num_keypoints(tensors_decoding_options->num_keypoints());
|
|
options->set_num_values_per_keypoint(
|
|
tensors_decoding_options->num_values_per_keypoint());
|
|
options->set_x_scale(tensors_decoding_options->x_scale());
|
|
options->set_y_scale(tensors_decoding_options->y_scale());
|
|
options->set_w_scale(tensors_decoding_options->w_scale());
|
|
options->set_h_scale(tensors_decoding_options->h_scale());
|
|
options->set_apply_exponential_on_box_size(
|
|
tensors_decoding_options->apply_exponential_on_box_size());
|
|
options->set_sigmoid_score(tensors_decoding_options->sigmoid_score());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!found_detector_metadata) {
|
|
return absl::InvalidArgumentError(
|
|
"TensorsDecodingOptions is not found in the object detector "
|
|
"metadata.");
|
|
}
|
|
// Options not configured through metadata.
|
|
options->set_box_format(
|
|
mediapipe::TensorsToDetectionsCalculatorOptions::YXHW);
|
|
options->set_min_score_thresh(specs.score_threshold);
|
|
if (specs.is_allowlist) {
|
|
options->mutable_allow_classes()->Assign(
|
|
specs.allow_or_deny_categories.begin(),
|
|
specs.allow_or_deny_categories.end());
|
|
} else {
|
|
options->mutable_ignore_classes()->Assign(
|
|
specs.allow_or_deny_categories.begin(),
|
|
specs.allow_or_deny_categories.end());
|
|
}
|
|
|
|
const auto& output_indices = specs.output_tensor_indices;
|
|
// Assigns indices to each the model output tensor.
|
|
auto* tensor_mapping = options->mutable_tensor_mapping();
|
|
tensor_mapping->set_detections_tensor_index(output_indices[0]);
|
|
tensor_mapping->set_scores_tensor_index(output_indices[1]);
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
// Configures the SsdAnchorsCalculator for models without
|
|
// non-maximum-suppression in tflite model. The required config parameters are
|
|
// extracted from the ObjectDetectorMetadata
|
|
// (metadata/object_detector_metadata_schema.fbs).
|
|
absl::Status ConfigureSsdAnchorsCalculator(
|
|
const ModelMetadataExtractor* metadata_extractor,
|
|
mediapipe::SsdAnchorsCalculatorOptions* options) {
|
|
bool found_detector_metadata = false;
|
|
if (metadata_extractor->GetCustomMetadataList() != nullptr &&
|
|
metadata_extractor->GetCustomMetadataList()->size() > 0) {
|
|
for (const auto* custom_metadata :
|
|
*metadata_extractor->GetCustomMetadataList()) {
|
|
if (custom_metadata->name()->str() == kDetectorMetadataName) {
|
|
found_detector_metadata = true;
|
|
const auto* ssd_anchors_options =
|
|
GetObjectDetectorOptions(custom_metadata->data()->data())
|
|
->ssd_anchors_options();
|
|
for (const auto* ssd_anchor :
|
|
*ssd_anchors_options->fixed_anchors_schema()->anchors()) {
|
|
auto* fixed_anchor = options->add_fixed_anchors();
|
|
fixed_anchor->set_y_center(ssd_anchor->y_center());
|
|
fixed_anchor->set_x_center(ssd_anchor->x_center());
|
|
fixed_anchor->set_h(ssd_anchor->height());
|
|
fixed_anchor->set_w(ssd_anchor->width());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!found_detector_metadata) {
|
|
return absl::InvalidArgumentError(
|
|
"SsdAnchorsOptions is not found in the object detector "
|
|
"metadata.");
|
|
}
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
// Sets the default IoU-based non-maximum-suppression configs, and set the
|
|
// min_suppression_threshold and max_results for detection models without
|
|
// non-maximum-suppression.
|
|
void ConfigureNonMaxSuppressionCalculator(
|
|
const proto::DetectorOptions& detector_options,
|
|
mediapipe::NonMaxSuppressionCalculatorOptions* options) {
|
|
options->set_min_suppression_threshold(
|
|
detector_options.min_suppression_threshold());
|
|
options->set_overlap_type(
|
|
mediapipe::NonMaxSuppressionCalculatorOptions::INTERSECTION_OVER_UNION);
|
|
options->set_algorithm(
|
|
mediapipe::NonMaxSuppressionCalculatorOptions::DEFAULT);
|
|
options->set_max_num_detections(detector_options.max_results());
|
|
}
|
|
|
|
// Sets the labels from post PostProcessingSpecs.
|
|
void ConfigureDetectionLabelIdToTextCalculator(
|
|
PostProcessingSpecs& specs,
|
|
mediapipe::DetectionLabelIdToTextCalculatorOptions* options) {
|
|
*options->mutable_label_items() = std::move(specs.label_items);
|
|
}
|
|
|
|
// Splits the vector of 4 output tensors from model inference and calibrate the
|
|
// score tensors according to the metadata, if any. Then concatenate the tensors
|
|
// back to a vector of 4 tensors.
|
|
absl::StatusOr<Source<std::vector<Tensor>>> CalibrateScores(
|
|
Source<std::vector<Tensor>> model_output_tensors,
|
|
const proto::DetectionPostprocessingGraphOptions& options, Graph& graph) {
|
|
// Split tensors.
|
|
auto* split_tensor_vector_node =
|
|
&graph.AddNode("SplitTensorVectorCalculator");
|
|
auto& split_tensor_vector_options =
|
|
split_tensor_vector_node
|
|
->GetOptions<mediapipe::SplitVectorCalculatorOptions>();
|
|
for (int i = 0; i < 4; ++i) {
|
|
auto* range = split_tensor_vector_options.add_ranges();
|
|
range->set_begin(i);
|
|
range->set_end(i + 1);
|
|
}
|
|
model_output_tensors >> split_tensor_vector_node->In(0);
|
|
|
|
// Add score calibration calculator.
|
|
auto* score_calibration_node = &graph.AddNode("ScoreCalibrationCalculator");
|
|
score_calibration_node->GetOptions<ScoreCalibrationCalculatorOptions>()
|
|
.CopyFrom(options.score_calibration_options());
|
|
const auto& tensor_mapping =
|
|
options.tensors_to_detections_options().tensor_mapping();
|
|
split_tensor_vector_node->Out(tensor_mapping.classes_tensor_index()) >>
|
|
score_calibration_node->In(kIndicesTag);
|
|
split_tensor_vector_node->Out(tensor_mapping.scores_tensor_index()) >>
|
|
score_calibration_node->In(kScoresTag);
|
|
|
|
// Re-concatenate tensors.
|
|
auto* concatenate_tensor_vector_node =
|
|
&graph.AddNode("ConcatenateTensorVectorCalculator");
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (i == tensor_mapping.scores_tensor_index()) {
|
|
score_calibration_node->Out(kCalibratedScoresTag) >>
|
|
concatenate_tensor_vector_node->In(i);
|
|
} else {
|
|
split_tensor_vector_node->Out(i) >> concatenate_tensor_vector_node->In(i);
|
|
}
|
|
}
|
|
model_output_tensors =
|
|
concatenate_tensor_vector_node->Out(0).Cast<std::vector<Tensor>>();
|
|
return model_output_tensors;
|
|
}
|
|
|
|
// Identifies whether or not the model has quantized outputs, and performs
|
|
// sanity checks.
|
|
absl::StatusOr<bool> HasQuantizedOutputs(
|
|
const core::ModelResources& model_resources) {
|
|
const tflite::Model& model = *model_resources.GetTfLiteModel();
|
|
// Model is checked to have single subgraph before.
|
|
const auto* primary_subgraph = (*model.subgraphs())[0];
|
|
int num_output_tensors = primary_subgraph->outputs()->size();
|
|
// Sanity check tensor types and check if model outputs are quantized or not.
|
|
int num_quantized_tensors = 0;
|
|
for (int i = 0; i < num_output_tensors; ++i) {
|
|
const auto* tensor =
|
|
primary_subgraph->tensors()->Get(primary_subgraph->outputs()->Get(i));
|
|
if (tensor->type() != tflite::TensorType_FLOAT32 &&
|
|
tensor->type() != tflite::TensorType_UINT8) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat("Expected output tensor at index %d to have type "
|
|
"UINT8 or FLOAT32, found %s instead.",
|
|
i, tflite::EnumNameTensorType(tensor->type())),
|
|
MediaPipeTasksStatus::kInvalidOutputTensorTypeError);
|
|
}
|
|
if (tensor->type() == tflite::TensorType_UINT8) {
|
|
num_quantized_tensors++;
|
|
}
|
|
}
|
|
if (num_quantized_tensors != num_output_tensors &&
|
|
num_quantized_tensors != 0) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat(
|
|
"Expected either all or none of the output tensors to be "
|
|
"quantized, but found %d quantized outputs for %d total outputs.",
|
|
num_quantized_tensors, num_output_tensors),
|
|
MediaPipeTasksStatus::kInvalidOutputTensorTypeError);
|
|
}
|
|
// Check if metadata is consistent with model topology.
|
|
const auto* output_tensors_metadata =
|
|
model_resources.GetMetadataExtractor()->GetOutputTensorMetadata();
|
|
if (output_tensors_metadata != nullptr &&
|
|
num_output_tensors != output_tensors_metadata->size()) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat("Mismatch between number of output tensors (%d) and "
|
|
"output tensors metadata (%d).",
|
|
num_output_tensors, output_tensors_metadata->size()),
|
|
MediaPipeTasksStatus::kMetadataInconsistencyError);
|
|
}
|
|
return num_quantized_tensors > 0;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
absl::Status ConfigureDetectionPostprocessingGraph(
|
|
const tasks::core::ModelResources& model_resources,
|
|
const proto::DetectorOptions& detector_options,
|
|
proto::DetectionPostprocessingGraphOptions& options) {
|
|
MP_RETURN_IF_ERROR(SanityCheckOptions(detector_options));
|
|
const auto& model = *model_resources.GetTfLiteModel();
|
|
bool in_model_nms = false;
|
|
if (model.subgraphs()->size() != 1) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat("Expected a model with a single subgraph, found %d.",
|
|
model.subgraphs()->size()),
|
|
MediaPipeTasksStatus::kInvalidArgumentError);
|
|
}
|
|
if (model.subgraphs()->Get(0)->outputs()->size() == 2) {
|
|
in_model_nms = false;
|
|
} else if (model.subgraphs()->Get(0)->outputs()->size() == 4) {
|
|
in_model_nms = true;
|
|
} else {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
absl::StrFormat(
|
|
"Expected a model with 2 or 4 output tensors, found %d.",
|
|
model.subgraphs()->Get(0)->outputs()->size()),
|
|
MediaPipeTasksStatus::kInvalidArgumentError);
|
|
}
|
|
MP_ASSIGN_OR_RETURN(bool has_quantized_outputs,
|
|
HasQuantizedOutputs(model_resources));
|
|
options.set_has_quantized_outputs(has_quantized_outputs);
|
|
const ModelMetadataExtractor* metadata_extractor =
|
|
model_resources.GetMetadataExtractor();
|
|
if (in_model_nms) {
|
|
MP_ASSIGN_OR_RETURN(auto post_processing_specs,
|
|
BuildInModelNmsPostProcessingSpecs(detector_options,
|
|
metadata_extractor));
|
|
ConfigureInModelNmsTensorsToDetectionsCalculator(
|
|
post_processing_specs, options.mutable_tensors_to_detections_options());
|
|
ConfigureDetectionLabelIdToTextCalculator(
|
|
post_processing_specs,
|
|
options.mutable_detection_label_ids_to_text_options());
|
|
if (post_processing_specs.score_calibration_options.has_value()) {
|
|
*options.mutable_score_calibration_options() =
|
|
std::move(*post_processing_specs.score_calibration_options);
|
|
}
|
|
} else {
|
|
MP_ASSIGN_OR_RETURN(auto post_processing_specs,
|
|
BuildOutModelNmsPostProcessingSpecs(
|
|
detector_options, metadata_extractor));
|
|
MP_RETURN_IF_ERROR(ConfigureOutModelNmsTensorsToDetectionsCalculator(
|
|
metadata_extractor, post_processing_specs,
|
|
options.mutable_tensors_to_detections_options()));
|
|
MP_RETURN_IF_ERROR(ConfigureSsdAnchorsCalculator(
|
|
metadata_extractor, options.mutable_ssd_anchors_options()));
|
|
ConfigureNonMaxSuppressionCalculator(
|
|
detector_options, options.mutable_non_max_suppression_options());
|
|
ConfigureDetectionLabelIdToTextCalculator(
|
|
post_processing_specs,
|
|
options.mutable_detection_label_ids_to_text_options());
|
|
}
|
|
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
// A DetectionPostprocessingGraph converts raw tensors into
|
|
// std::vector<Detection>.
|
|
//
|
|
// Inputs:
|
|
// TENSORS - std::vector<Tensor>
|
|
// The output tensors of an InferenceCalculator. The tensors vector could be
|
|
// size 4 or size 2. Tensors vector of size 4 expects the tensors from the
|
|
// models with DETECTION_POSTPROCESS ops in the tflite graph. Tensors vector
|
|
// of size 2 expects the tensors from the models without the ops.
|
|
// [1]:
|
|
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/detection_postprocess.cc
|
|
// Outputs:
|
|
// DETECTIONS - std::vector<Detection>
|
|
// The postprocessed detection results.
|
|
//
|
|
// The recommended way of using this graph is through the GraphBuilder API
|
|
// using the 'ConfigureDetectionPostprocessingGraph()' function. See header
|
|
// file for more details.
|
|
class DetectionPostprocessingGraph : public mediapipe::Subgraph {
|
|
public:
|
|
absl::StatusOr<mediapipe::CalculatorGraphConfig> GetConfig(
|
|
mediapipe::SubgraphContext* sc) override {
|
|
Graph graph;
|
|
MP_ASSIGN_OR_RETURN(
|
|
auto output_streams,
|
|
BuildDetectionPostprocessing(
|
|
*sc->MutableOptions<proto::DetectionPostprocessingGraphOptions>(),
|
|
graph.In(kTensorsTag).Cast<std::vector<Tensor>>(), graph));
|
|
output_streams.detections >>
|
|
graph.Out(kDetectionsTag).Cast<std::vector<Detection>>();
|
|
return graph.GetConfig();
|
|
}
|
|
|
|
private:
|
|
// Adds an on-device detection postprocessing graph into the provided
|
|
// builder::Graph instance. The detection postprocessing graph takes
|
|
// tensors (std::vector<mediapipe::Tensor>) as input and returns one output
|
|
// stream:
|
|
// - Detection results as a std::vector<Detection>.
|
|
//
|
|
// graph_options: the on-device DetectionPostprocessingGraphOptions.
|
|
// tensors_in: (std::vector<mediapipe::Tensor>>) tensors to postprocess.
|
|
// graph: the mediapipe builder::Graph instance to be updated.
|
|
absl::StatusOr<DetectionPostprocessingOutputStreams>
|
|
BuildDetectionPostprocessing(
|
|
proto::DetectionPostprocessingGraphOptions& graph_options,
|
|
Source<std::vector<Tensor>> tensors_in, Graph& graph) {
|
|
Source<std::vector<Tensor>> tensors = tensors_in;
|
|
if (graph_options.has_quantized_outputs()) {
|
|
auto& tensors_dequantization_node =
|
|
graph.AddNode("TensorsDequantizationCalculator");
|
|
tensors_in >> tensors_dequantization_node.In(kTensorsTag);
|
|
tensors = tensors_dequantization_node.Out(kTensorsTag)
|
|
.Cast<std::vector<Tensor>>();
|
|
}
|
|
std::optional<Source<std::vector<Detection>>> detections;
|
|
if (!graph_options.has_non_max_suppression_options()) {
|
|
// Calculators to perform score calibration, if specified in the options.
|
|
if (graph_options.has_score_calibration_options()) {
|
|
MP_ASSIGN_OR_RETURN(tensors,
|
|
CalibrateScores(tensors, graph_options, graph));
|
|
}
|
|
// Calculator to convert output tensors to a detection proto vector.
|
|
auto& tensors_to_detections =
|
|
graph.AddNode("TensorsToDetectionsCalculator");
|
|
tensors_to_detections
|
|
.GetOptions<mediapipe::TensorsToDetectionsCalculatorOptions>()
|
|
.Swap(graph_options.mutable_tensors_to_detections_options());
|
|
tensors >> tensors_to_detections.In(kTensorsTag);
|
|
detections = tensors_to_detections.Out(kDetectionsTag)
|
|
.Cast<std::vector<Detection>>();
|
|
} else {
|
|
// Generates a single side packet containing a vector of SSD anchors.
|
|
auto& ssd_anchor = graph.AddNode("SsdAnchorsCalculator");
|
|
ssd_anchor.GetOptions<mediapipe::SsdAnchorsCalculatorOptions>().Swap(
|
|
graph_options.mutable_ssd_anchors_options());
|
|
auto anchors =
|
|
ssd_anchor.SideOut("").Cast<std::vector<mediapipe::Anchor>>();
|
|
// Convert raw output tensors to detections.
|
|
auto& tensors_to_detections =
|
|
graph.AddNode("TensorsToDetectionsCalculator");
|
|
tensors_to_detections
|
|
.GetOptions<mediapipe::TensorsToDetectionsCalculatorOptions>()
|
|
.Swap(graph_options.mutable_tensors_to_detections_options());
|
|
anchors >> tensors_to_detections.SideIn(kAnchorsTag);
|
|
tensors >> tensors_to_detections.In(kTensorsTag);
|
|
detections = tensors_to_detections.Out(kDetectionsTag)
|
|
.Cast<std::vector<mediapipe::Detection>>();
|
|
// Non maximum suppression removes redundant object detections.
|
|
auto& non_maximum_suppression =
|
|
graph.AddNode("NonMaxSuppressionCalculator");
|
|
non_maximum_suppression
|
|
.GetOptions<mediapipe::NonMaxSuppressionCalculatorOptions>()
|
|
.Swap(graph_options.mutable_non_max_suppression_options());
|
|
*detections >> non_maximum_suppression.In("");
|
|
detections =
|
|
non_maximum_suppression.Out("").Cast<std::vector<Detection>>();
|
|
}
|
|
|
|
// Calculator to assign detection labels.
|
|
auto& detection_label_id_to_text =
|
|
graph.AddNode("DetectionLabelIdToTextCalculator");
|
|
detection_label_id_to_text
|
|
.GetOptions<mediapipe::DetectionLabelIdToTextCalculatorOptions>()
|
|
.Swap(graph_options.mutable_detection_label_ids_to_text_options());
|
|
*detections >> detection_label_id_to_text.In("");
|
|
return {
|
|
{detection_label_id_to_text.Out("").Cast<std::vector<Detection>>()}};
|
|
}
|
|
};
|
|
|
|
// REGISTER_MEDIAPIPE_GRAPH argument has to fit on one line to work properly.
|
|
// clang-format off
|
|
REGISTER_MEDIAPIPE_GRAPH(
|
|
::mediapipe::tasks::components::processors::DetectionPostprocessingGraph); // NOLINT
|
|
// clang-format on
|
|
|
|
} // namespace processors
|
|
} // namespace components
|
|
} // namespace tasks
|
|
} // namespace mediapipe
|