mediapipe/mediapipe/tasks/python/test/text/text_embedder_test.py
MediaPipe Team 64d1e74c20 Internal MediaPipe Tasks change
PiperOrigin-RevId: 525182282
2023-04-18 10:20:03 -07:00

327 lines
11 KiB
Python

# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for text embedder."""
import enum
import os
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from mediapipe.tasks.python.components.containers import embedding_result as embedding_result_module
from mediapipe.tasks.python.core import base_options as base_options_module
from mediapipe.tasks.python.test import test_utils
from mediapipe.tasks.python.text import text_embedder
_BaseOptions = base_options_module.BaseOptions
_Embedding = embedding_result_module.Embedding
_TextEmbedder = text_embedder.TextEmbedder
_TextEmbedderOptions = text_embedder.TextEmbedderOptions
_BERT_MODEL_FILE = 'mobilebert_embedding_with_metadata.tflite'
_REGEX_MODEL_FILE = 'regex_one_embedding_with_metadata.tflite'
_USE_MODEL_FILE = 'universal_sentence_encoder_qa_with_metadata.tflite'
_TEST_DATA_DIR = 'mediapipe/tasks/testdata/text'
# Tolerance for embedding vector coordinate values.
_EPSILON = 1e-4
# Tolerance for cosine similarity evaluation.
_SIMILARITY_TOLERANCE = 1e-6
class ModelFileType(enum.Enum):
FILE_CONTENT = 1
FILE_NAME = 2
class TextEmbedderTest(parameterized.TestCase):
def setUp(self):
super().setUp()
self.model_path = test_utils.get_test_data_path(
os.path.join(_TEST_DATA_DIR, _BERT_MODEL_FILE))
def test_create_from_file_succeeds_with_valid_model_path(self):
# Creates with default option and valid model file successfully.
with _TextEmbedder.create_from_model_path(self.model_path) as embedder:
self.assertIsInstance(embedder, _TextEmbedder)
def test_create_from_options_succeeds_with_valid_model_path(self):
# Creates with options containing model file successfully.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _TextEmbedderOptions(base_options=base_options)
with _TextEmbedder.create_from_options(options) as embedder:
self.assertIsInstance(embedder, _TextEmbedder)
def test_create_from_options_fails_with_invalid_model_path(self):
with self.assertRaisesRegex(
RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'):
base_options = _BaseOptions(
model_asset_path='/path/to/invalid/model.tflite')
options = _TextEmbedderOptions(base_options=base_options)
_TextEmbedder.create_from_options(options)
def test_create_from_options_succeeds_with_valid_model_content(self):
# Creates with options containing model content successfully.
with open(self.model_path, 'rb') as f:
base_options = _BaseOptions(model_asset_buffer=f.read())
options = _TextEmbedderOptions(base_options=base_options)
embedder = _TextEmbedder.create_from_options(options)
self.assertIsInstance(embedder, _TextEmbedder)
def _check_embedding_value(self, result, expected_first_value):
# Check embedding first value.
self.assertAlmostEqual(
result.embeddings[0].embedding[0], expected_first_value, delta=_EPSILON)
def _check_embedding_size(self, result, quantize, expected_embedding_size):
# Check embedding size.
self.assertLen(result.embeddings, 1)
embedding_result = result.embeddings[0]
self.assertLen(embedding_result.embedding, expected_embedding_size)
if quantize:
self.assertEqual(embedding_result.embedding.dtype, np.uint8)
else:
self.assertEqual(embedding_result.embedding.dtype, float)
def _check_cosine_similarity(self, result0, result1, expected_similarity):
# Checks cosine similarity.
similarity = _TextEmbedder.cosine_similarity(result0.embeddings[0],
result1.embeddings[0])
self.assertAlmostEqual(
similarity, expected_similarity, delta=_SIMILARITY_TOLERANCE)
@parameterized.parameters(
(
False,
False,
_BERT_MODEL_FILE,
ModelFileType.FILE_NAME,
0.969514,
512,
(19.9016, 22.626251),
),
(
True,
False,
_BERT_MODEL_FILE,
ModelFileType.FILE_NAME,
0.969514,
512,
(0.0585837, 0.0723035),
),
(
False,
False,
_REGEX_MODEL_FILE,
ModelFileType.FILE_NAME,
0.999937,
16,
(0.0309356, 0.0312863),
),
(
True,
False,
_REGEX_MODEL_FILE,
ModelFileType.FILE_CONTENT,
0.999937,
16,
(0.549632, 0.552879),
),
(
False,
False,
_USE_MODEL_FILE,
ModelFileType.FILE_NAME,
0.851961,
100,
(1.422951, 1.404664),
),
(
True,
False,
_USE_MODEL_FILE,
ModelFileType.FILE_CONTENT,
0.851961,
100,
(0.127049, 0.125416),
),
)
def test_embed(self, l2_normalize, quantize, model_name, model_file_type,
expected_similarity, expected_size, expected_first_values):
# Creates embedder.
model_path = test_utils.get_test_data_path(
os.path.join(_TEST_DATA_DIR, model_name))
if model_file_type is ModelFileType.FILE_NAME:
base_options = _BaseOptions(model_asset_path=model_path)
elif model_file_type is ModelFileType.FILE_CONTENT:
with open(model_path, 'rb') as f:
model_content = f.read()
base_options = _BaseOptions(model_asset_buffer=model_content)
else:
# Should never happen
raise ValueError('model_file_type is invalid.')
options = _TextEmbedderOptions(
base_options=base_options, l2_normalize=l2_normalize, quantize=quantize)
embedder = _TextEmbedder.create_from_options(options)
# Extracts both embeddings.
positive_text0 = "it's a charming and often affecting journey"
positive_text1 = 'what a great and fantastic trip'
result0 = embedder.embed(positive_text0)
result1 = embedder.embed(positive_text1)
# Checks embeddings and cosine similarity.
expected_result0_value, expected_result1_value = expected_first_values
self._check_embedding_size(result0, quantize, expected_size)
self._check_embedding_size(result1, quantize, expected_size)
self._check_embedding_value(result0, expected_result0_value)
self._check_embedding_value(result1, expected_result1_value)
self._check_cosine_similarity(result0, result1, expected_similarity)
# Closes the embedder explicitly when the embedder is not used in
# a context.
embedder.close()
@parameterized.parameters(
(
False,
False,
_BERT_MODEL_FILE,
ModelFileType.FILE_NAME,
0.969514,
512,
(19.9016, 22.626251),
),
(
True,
False,
_BERT_MODEL_FILE,
ModelFileType.FILE_NAME,
0.969514,
512,
(0.0585837, 0.0723035),
),
(
False,
False,
_REGEX_MODEL_FILE,
ModelFileType.FILE_NAME,
0.999937,
16,
(0.0309356, 0.0312863),
),
(
True,
False,
_REGEX_MODEL_FILE,
ModelFileType.FILE_CONTENT,
0.999937,
16,
(0.549632, 0.552879),
),
(
False,
False,
_USE_MODEL_FILE,
ModelFileType.FILE_NAME,
0.851961,
100,
(1.422951, 1.404664),
),
(
True,
False,
_USE_MODEL_FILE,
ModelFileType.FILE_CONTENT,
0.851961,
100,
(0.127049, 0.125416),
),
)
def test_embed_in_context(self, l2_normalize, quantize, model_name,
model_file_type, expected_similarity, expected_size,
expected_first_values):
# Creates embedder.
model_path = test_utils.get_test_data_path(
os.path.join(_TEST_DATA_DIR, model_name))
if model_file_type is ModelFileType.FILE_NAME:
base_options = _BaseOptions(model_asset_path=model_path)
elif model_file_type is ModelFileType.FILE_CONTENT:
with open(model_path, 'rb') as f:
model_content = f.read()
base_options = _BaseOptions(model_asset_buffer=model_content)
else:
# Should never happen
raise ValueError('model_file_type is invalid.')
options = _TextEmbedderOptions(
base_options=base_options, l2_normalize=l2_normalize, quantize=quantize)
with _TextEmbedder.create_from_options(options) as embedder:
# Extracts both embeddings.
positive_text0 = "it's a charming and often affecting journey"
positive_text1 = 'what a great and fantastic trip'
result0 = embedder.embed(positive_text0)
result1 = embedder.embed(positive_text1)
# Checks embeddings and cosine similarity.
expected_result0_value, expected_result1_value = expected_first_values
self._check_embedding_size(result0, quantize, expected_size)
self._check_embedding_size(result1, quantize, expected_size)
self._check_embedding_value(result0, expected_result0_value)
self._check_embedding_value(result1, expected_result1_value)
self._check_cosine_similarity(result0, result1, expected_similarity)
@parameterized.parameters(
# TODO: The similarity should likely be lower
(_BERT_MODEL_FILE, 0.980880),
(_USE_MODEL_FILE, 0.780334),
)
def test_embed_with_different_themes(self, model_file, expected_similarity):
# Creates embedder.
model_path = test_utils.get_test_data_path(
os.path.join(_TEST_DATA_DIR, model_file)
)
base_options = _BaseOptions(model_asset_path=model_path)
options = _TextEmbedderOptions(base_options=base_options)
embedder = _TextEmbedder.create_from_options(options)
# Extracts both embeddings.
text0 = (
'When you go to this restaurant, they hold the pancake upside-down '
"before they hand it to you. It's a great gimmick."
)
result0 = embedder.embed(text0)
text1 = "Let's make a plan to steal the declaration of independence."
result1 = embedder.embed(text1)
similarity = _TextEmbedder.cosine_similarity(
result0.embeddings[0], result1.embeddings[0]
)
self.assertAlmostEqual(
similarity, expected_similarity, delta=_SIMILARITY_TOLERANCE
)
# Closes the embedder explicitly when the embedder is not used in
# a context.
embedder.close()
if __name__ == '__main__':
absltest.main()