216 lines
9.2 KiB
C++
216 lines
9.2 KiB
C++
/* Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "mediapipe/tasks/cc/vision/image_classifier/image_classifier.h"
|
|
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <utility>
|
|
|
|
#include "absl/status/status.h"
|
|
#include "absl/status/statusor.h"
|
|
#include "mediapipe/framework/api2/builder.h"
|
|
#include "mediapipe/framework/formats/image.h"
|
|
#include "mediapipe/framework/formats/rect.pb.h"
|
|
#include "mediapipe/framework/packet.h"
|
|
#include "mediapipe/framework/timestamp.h"
|
|
#include "mediapipe/tasks/cc/components/containers/classification_result.h"
|
|
#include "mediapipe/tasks/cc/components/containers/proto/classifications.pb.h"
|
|
#include "mediapipe/tasks/cc/components/processors/classifier_options.h"
|
|
#include "mediapipe/tasks/cc/components/processors/proto/classifier_options.pb.h"
|
|
#include "mediapipe/tasks/cc/core/base_options.h"
|
|
#include "mediapipe/tasks/cc/core/proto/base_options.pb.h"
|
|
#include "mediapipe/tasks/cc/core/proto/inference_subgraph.pb.h"
|
|
#include "mediapipe/tasks/cc/core/task_runner.h"
|
|
#include "mediapipe/tasks/cc/core/utils.h"
|
|
#include "mediapipe/tasks/cc/vision/core/image_processing_options.h"
|
|
#include "mediapipe/tasks/cc/vision/core/running_mode.h"
|
|
#include "mediapipe/tasks/cc/vision/core/vision_task_api_factory.h"
|
|
#include "mediapipe/tasks/cc/vision/image_classifier/proto/image_classifier_graph_options.pb.h"
|
|
|
|
namespace mediapipe {
|
|
namespace tasks {
|
|
namespace vision {
|
|
namespace image_classifier {
|
|
|
|
namespace {
|
|
|
|
constexpr char kClassificationsStreamName[] = "classifications_out";
|
|
constexpr char kClassificationsTag[] = "CLASSIFICATIONS";
|
|
constexpr char kImageInStreamName[] = "image_in";
|
|
constexpr char kImageOutStreamName[] = "image_out";
|
|
constexpr char kImageTag[] = "IMAGE";
|
|
constexpr char kNormRectName[] = "norm_rect_in";
|
|
constexpr char kNormRectTag[] = "NORM_RECT";
|
|
constexpr char kSubgraphTypeName[] =
|
|
"mediapipe.tasks.vision.image_classifier.ImageClassifierGraph";
|
|
constexpr int kMicroSecondsPerMilliSecond = 1000;
|
|
|
|
using ::mediapipe::tasks::components::containers::ConvertToClassificationResult;
|
|
using ::mediapipe::tasks::components::containers::proto::ClassificationResult;
|
|
using ::mediapipe::tasks::core::PacketMap;
|
|
|
|
// Creates a MediaPipe graph config that contains a subgraph node of
|
|
// type "ImageClassifierGraph". If the task is running in the live stream mode,
|
|
// a "FlowLimiterCalculator" will be added to limit the number of frames in
|
|
// flight.
|
|
CalculatorGraphConfig CreateGraphConfig(
|
|
std::unique_ptr<proto::ImageClassifierGraphOptions> options_proto,
|
|
bool enable_flow_limiting) {
|
|
api2::builder::Graph graph;
|
|
graph.In(kImageTag).SetName(kImageInStreamName);
|
|
graph.In(kNormRectTag).SetName(kNormRectName);
|
|
auto& task_subgraph = graph.AddNode(kSubgraphTypeName);
|
|
task_subgraph.GetOptions<proto::ImageClassifierGraphOptions>().Swap(
|
|
options_proto.get());
|
|
task_subgraph.Out(kClassificationsTag).SetName(kClassificationsStreamName) >>
|
|
graph.Out(kClassificationsTag);
|
|
task_subgraph.Out(kImageTag).SetName(kImageOutStreamName) >>
|
|
graph.Out(kImageTag);
|
|
if (enable_flow_limiting) {
|
|
return tasks::core::AddFlowLimiterCalculator(
|
|
graph, task_subgraph, {kImageTag, kNormRectTag}, kClassificationsTag);
|
|
}
|
|
graph.In(kImageTag) >> task_subgraph.In(kImageTag);
|
|
graph.In(kNormRectTag) >> task_subgraph.In(kNormRectTag);
|
|
return graph.GetConfig();
|
|
}
|
|
|
|
// Converts the user-facing ImageClassifierOptions struct to the internal
|
|
// ImageClassifierGraphOptions proto.
|
|
std::unique_ptr<proto::ImageClassifierGraphOptions>
|
|
ConvertImageClassifierOptionsToProto(ImageClassifierOptions* options) {
|
|
auto options_proto = std::make_unique<proto::ImageClassifierGraphOptions>();
|
|
auto base_options_proto = std::make_unique<tasks::core::proto::BaseOptions>(
|
|
tasks::core::ConvertBaseOptionsToProto(&(options->base_options)));
|
|
options_proto->mutable_base_options()->Swap(base_options_proto.get());
|
|
options_proto->mutable_base_options()->set_use_stream_mode(
|
|
options->running_mode != core::RunningMode::IMAGE);
|
|
auto classifier_options_proto =
|
|
std::make_unique<components::processors::proto::ClassifierOptions>(
|
|
components::processors::ConvertClassifierOptionsToProto(
|
|
&(options->classifier_options)));
|
|
options_proto->mutable_classifier_options()->Swap(
|
|
classifier_options_proto.get());
|
|
return options_proto;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
absl::StatusOr<std::unique_ptr<ImageClassifier>> ImageClassifier::Create(
|
|
std::unique_ptr<ImageClassifierOptions> options) {
|
|
auto options_proto = ConvertImageClassifierOptionsToProto(options.get());
|
|
tasks::core::PacketsCallback packets_callback = nullptr;
|
|
if (options->result_callback) {
|
|
auto result_callback = options->result_callback;
|
|
packets_callback =
|
|
[=](absl::StatusOr<tasks::core::PacketMap> status_or_packets) {
|
|
if (!status_or_packets.ok()) {
|
|
Image image;
|
|
result_callback(status_or_packets.status(), image,
|
|
Timestamp::Unset().Value());
|
|
}
|
|
if (status_or_packets.value()[kImageOutStreamName].IsEmpty()) {
|
|
return;
|
|
}
|
|
Packet classifications_packet =
|
|
status_or_packets.value()[kClassificationsStreamName];
|
|
Packet image_packet = status_or_packets.value()[kImageOutStreamName];
|
|
result_callback(
|
|
ConvertToClassificationResult(
|
|
classifications_packet.Get<ClassificationResult>()),
|
|
image_packet.Get<Image>(),
|
|
classifications_packet.Timestamp().Value() /
|
|
kMicroSecondsPerMilliSecond);
|
|
};
|
|
}
|
|
return core::VisionTaskApiFactory::Create<ImageClassifier,
|
|
proto::ImageClassifierGraphOptions>(
|
|
CreateGraphConfig(
|
|
std::move(options_proto),
|
|
options->running_mode == core::RunningMode::LIVE_STREAM),
|
|
std::move(options->base_options.op_resolver), options->running_mode,
|
|
std::move(packets_callback));
|
|
}
|
|
|
|
absl::StatusOr<ImageClassifierResult> ImageClassifier::Classify(
|
|
Image image,
|
|
std::optional<core::ImageProcessingOptions> image_processing_options) {
|
|
if (image.UsesGpu()) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
"GPU input images are currently not supported.",
|
|
MediaPipeTasksStatus::kRunnerUnexpectedInputError);
|
|
}
|
|
ASSIGN_OR_RETURN(NormalizedRect norm_rect,
|
|
ConvertToNormalizedRect(image_processing_options));
|
|
ASSIGN_OR_RETURN(
|
|
auto output_packets,
|
|
ProcessImageData(
|
|
{{kImageInStreamName, MakePacket<Image>(std::move(image))},
|
|
{kNormRectName, MakePacket<NormalizedRect>(std::move(norm_rect))}}));
|
|
return ConvertToClassificationResult(
|
|
output_packets[kClassificationsStreamName].Get<ClassificationResult>());
|
|
}
|
|
|
|
absl::StatusOr<ImageClassifierResult> ImageClassifier::ClassifyForVideo(
|
|
Image image, int64 timestamp_ms,
|
|
std::optional<core::ImageProcessingOptions> image_processing_options) {
|
|
if (image.UsesGpu()) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
"GPU input images are currently not supported.",
|
|
MediaPipeTasksStatus::kRunnerUnexpectedInputError);
|
|
}
|
|
ASSIGN_OR_RETURN(NormalizedRect norm_rect,
|
|
ConvertToNormalizedRect(image_processing_options));
|
|
ASSIGN_OR_RETURN(
|
|
auto output_packets,
|
|
ProcessVideoData(
|
|
{{kImageInStreamName,
|
|
MakePacket<Image>(std::move(image))
|
|
.At(Timestamp(timestamp_ms * kMicroSecondsPerMilliSecond))},
|
|
{kNormRectName,
|
|
MakePacket<NormalizedRect>(std::move(norm_rect))
|
|
.At(Timestamp(timestamp_ms * kMicroSecondsPerMilliSecond))}}));
|
|
return ConvertToClassificationResult(
|
|
output_packets[kClassificationsStreamName].Get<ClassificationResult>());
|
|
}
|
|
|
|
absl::Status ImageClassifier::ClassifyAsync(
|
|
Image image, int64 timestamp_ms,
|
|
std::optional<core::ImageProcessingOptions> image_processing_options) {
|
|
if (image.UsesGpu()) {
|
|
return CreateStatusWithPayload(
|
|
absl::StatusCode::kInvalidArgument,
|
|
"GPU input images are currently not supported.",
|
|
MediaPipeTasksStatus::kRunnerUnexpectedInputError);
|
|
}
|
|
ASSIGN_OR_RETURN(NormalizedRect norm_rect,
|
|
ConvertToNormalizedRect(image_processing_options));
|
|
return SendLiveStreamData(
|
|
{{kImageInStreamName,
|
|
MakePacket<Image>(std::move(image))
|
|
.At(Timestamp(timestamp_ms * kMicroSecondsPerMilliSecond))},
|
|
{kNormRectName,
|
|
MakePacket<NormalizedRect>(std::move(norm_rect))
|
|
.At(Timestamp(timestamp_ms * kMicroSecondsPerMilliSecond))}});
|
|
}
|
|
|
|
} // namespace image_classifier
|
|
} // namespace vision
|
|
} // namespace tasks
|
|
} // namespace mediapipe
|