mediapipe/mediapipe/tasks/python/test/vision/gesture_recognizer_test.py
2022-10-31 22:16:37 -07:00

581 lines
28 KiB
Python

# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for gesture recognizer."""
import enum
from unittest import mock
import numpy as np
from google.protobuf import text_format
from absl.testing import absltest
from absl.testing import parameterized
from mediapipe.python._framework_bindings import image as image_module
from mediapipe.tasks.cc.components.containers.proto import landmarks_detection_result_pb2
from mediapipe.tasks.python.components.containers import rect as rect_module
from mediapipe.tasks.python.components.containers import category as category_module
from mediapipe.tasks.python.components.containers import landmark as landmark_module
from mediapipe.tasks.python.components.containers import landmark_detection_result as landmark_detection_result_module
from mediapipe.tasks.python.components.processors import classifier_options
from mediapipe.tasks.python.core import base_options as base_options_module
from mediapipe.tasks.python.test import test_utils
from mediapipe.tasks.python.vision import gesture_recognizer
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
_LandmarksDetectionResultProto = landmarks_detection_result_pb2.LandmarksDetectionResult
_BaseOptions = base_options_module.BaseOptions
_Rect = rect_module.Rect
_Category = category_module.Category
_Landmark = landmark_module.Landmark
_NormalizedLandmark = landmark_module.NormalizedLandmark
_LandmarksDetectionResult = landmark_detection_result_module.LandmarksDetectionResult
_ClassifierOptions = classifier_options.ClassifierOptions
_Image = image_module.Image
_GestureRecognizer = gesture_recognizer.GestureRecognizer
_GestureRecognizerOptions = gesture_recognizer.GestureRecognizerOptions
_GestureRecognitionResult = gesture_recognizer.GestureRecognitionResult
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
_GESTURE_RECOGNIZER_BUNDLE_ASSET_FILE = 'gesture_recognizer.task'
_GESTURE_RECOGNIZER_WITH_CUSTOM_CLASSIFIER_BUNDLE_ASSET_FILE = 'gesture_recognizer_with_custom_classifier.task'
_NO_HANDS_IMAGE = 'cats_and_dogs.jpg'
_TWO_HANDS_IMAGE = 'right_hands.jpg'
_FIST_IMAGE = 'fist.jpg'
_FIST_LANDMARKS = 'fist_landmarks.pbtxt'
_VICTORY_IMAGE = 'victory.jpg'
_VICTORY_LANDMARKS = 'victory_landmarks.pbtxt'
_VICTORY_LABEL = 'Victory'
_THUMB_UP_IMAGE = 'thumb_up.jpg'
_THUMB_UP_LANDMARKS = 'thumb_up_landmarks.pbtxt'
_THUMB_UP_LABEL = 'Thumb_Up'
_POINTING_UP_IMAGE = 'pointing_up.jpg'
_POINTING_UP_LANDMARKS = 'pointing_up_landmarks.pbtxt'
_POINTING_UP_ROTATED_IMAGE = 'pointing_up_rotated.jpg'
_POINTING_UP_ROTATED_LANDMARKS = 'pointing_up_rotated_landmarks.pbtxt'
_POINTING_UP_LABEL = 'Pointing_Up'
_ROCK_LABEL = 'Rock'
_LANDMARKS_ERROR_TOLERANCE = 0.03
_GESTURE_EXPECTED_INDEX = -1
def _get_expected_gesture_recognition_result(
file_path: str, gesture_label: str
) -> _GestureRecognitionResult:
landmarks_detection_result_file_path = test_utils.get_test_data_path(
file_path)
with open(landmarks_detection_result_file_path, "rb") as f:
landmarks_detection_result_proto = _LandmarksDetectionResultProto()
# # Use this if a .pb file is available.
# landmarks_detection_result_proto.ParseFromString(f.read())
text_format.Parse(f.read(), landmarks_detection_result_proto)
landmarks_detection_result = _LandmarksDetectionResult.create_from_pb2(
landmarks_detection_result_proto)
gesture = _Category(category_name=gesture_label,
index=_GESTURE_EXPECTED_INDEX,
display_name='')
return _GestureRecognitionResult(
gestures=[[gesture]],
handedness=[landmarks_detection_result.categories],
hand_landmarks=[landmarks_detection_result.landmarks],
hand_world_landmarks=[landmarks_detection_result.world_landmarks])
class ModelFileType(enum.Enum):
FILE_CONTENT = 1
FILE_NAME = 2
class GestureRecognizerTest(parameterized.TestCase):
def setUp(self):
super().setUp()
self.test_image = _Image.create_from_file(
test_utils.get_test_data_path(_THUMB_UP_IMAGE))
self.model_path = test_utils.get_test_data_path(
_GESTURE_RECOGNIZER_BUNDLE_ASSET_FILE)
def _assert_actual_result_approximately_matches_expected_result(
self,
actual_result: _GestureRecognitionResult,
expected_result: _GestureRecognitionResult
):
# Expects to have the same number of hands detected.
self.assertLen(actual_result.hand_landmarks,
len(expected_result.hand_landmarks))
self.assertLen(actual_result.hand_world_landmarks,
len(expected_result.hand_world_landmarks))
self.assertLen(actual_result.handedness, len(expected_result.handedness))
self.assertLen(actual_result.gestures, len(expected_result.gestures))
# Actual landmarks match expected landmarks.
self.assertLen(actual_result.hand_landmarks[0],
len(expected_result.hand_landmarks[0]))
actual_landmarks = actual_result.hand_landmarks[0]
expected_landmarks = expected_result.hand_landmarks[0]
for i in range(len(actual_landmarks)):
self.assertAlmostEqual(actual_landmarks[i].x, expected_landmarks[i].x,
delta=_LANDMARKS_ERROR_TOLERANCE)
self.assertAlmostEqual(actual_landmarks[i].y, expected_landmarks[i].y,
delta=_LANDMARKS_ERROR_TOLERANCE)
# Actual handedness matches expected handedness.
actual_top_handedness = actual_result.handedness[0][0]
expected_top_handedness = expected_result.handedness[0][0]
self.assertEqual(actual_top_handedness.index, expected_top_handedness.index)
self.assertEqual(actual_top_handedness.category_name,
expected_top_handedness.category_name)
# Actual gesture with top score matches expected gesture.
actual_top_gesture = actual_result.gestures[0][0]
expected_top_gesture = expected_result.gestures[0][0]
self.assertEqual(actual_top_gesture.index, _GESTURE_EXPECTED_INDEX)
self.assertEqual(actual_top_gesture.category_name,
expected_top_gesture.category_name)
def test_create_from_file_succeeds_with_valid_model_path(self):
# Creates with default option and valid model file successfully.
with _GestureRecognizer.create_from_model_path(self.model_path) as recognizer:
self.assertIsInstance(recognizer, _GestureRecognizer)
def test_create_from_options_succeeds_with_valid_model_path(self):
# Creates with options containing model file successfully.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _GestureRecognizerOptions(base_options=base_options)
with _GestureRecognizer.create_from_options(options) as recognizer:
self.assertIsInstance(recognizer, _GestureRecognizer)
def test_create_from_options_fails_with_invalid_model_path(self):
# Invalid empty model path.
with self.assertRaisesRegex(
ValueError,
r"ExternalFile must specify at least one of 'file_content', "
r"'file_name', 'file_pointer_meta' or 'file_descriptor_meta'."):
base_options = _BaseOptions(model_asset_path='')
options = _GestureRecognizerOptions(base_options=base_options)
_GestureRecognizer.create_from_options(options)
def test_create_from_options_succeeds_with_valid_model_content(self):
# Creates with options containing model content successfully.
with open(self.model_path, 'rb') as f:
base_options = _BaseOptions(model_asset_buffer=f.read())
options = _GestureRecognizerOptions(base_options=base_options)
recognizer = _GestureRecognizer.create_from_options(options)
self.assertIsInstance(recognizer, _GestureRecognizer)
@parameterized.parameters(
(ModelFileType.FILE_NAME, _get_expected_gesture_recognition_result(
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL
)),
(ModelFileType.FILE_CONTENT, _get_expected_gesture_recognition_result(
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL
)))
def test_recognize(self, model_file_type, expected_recognition_result):
# Creates gesture recognizer.
if model_file_type is ModelFileType.FILE_NAME:
base_options = _BaseOptions(model_asset_path=self.model_path)
elif model_file_type is ModelFileType.FILE_CONTENT:
with open(self.model_path, 'rb') as f:
model_content = f.read()
base_options = _BaseOptions(model_asset_buffer=model_content)
else:
# Should never happen
raise ValueError('model_file_type is invalid.')
options = _GestureRecognizerOptions(base_options=base_options)
recognizer = _GestureRecognizer.create_from_options(options)
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(self.test_image)
# Comparing results.
self._assert_actual_result_approximately_matches_expected_result(
recognition_result, expected_recognition_result)
# Closes the gesture recognizer explicitly when the gesture recognizer is
# not used in a context.
recognizer.close()
@parameterized.parameters(
(ModelFileType.FILE_NAME, _get_expected_gesture_recognition_result(
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL
)),
(ModelFileType.FILE_CONTENT, _get_expected_gesture_recognition_result(
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL
)))
def test_recognize_in_context(self, model_file_type,
expected_recognition_result):
# Creates gesture recognizer.
if model_file_type is ModelFileType.FILE_NAME:
base_options = _BaseOptions(model_asset_path=self.model_path)
elif model_file_type is ModelFileType.FILE_CONTENT:
with open(self.model_path, 'rb') as f:
model_content = f.read()
base_options = _BaseOptions(model_asset_buffer=model_content)
else:
# Should never happen
raise ValueError('model_file_type is invalid.')
options = _GestureRecognizerOptions(base_options=base_options)
with _GestureRecognizer.create_from_options(options) as recognizer:
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(self.test_image)
# Comparing results.
self._assert_actual_result_approximately_matches_expected_result(
recognition_result, expected_recognition_result)
def test_recognize_succeeds_with_score_threshold(self):
# Creates gesture recognizer.
base_options = _BaseOptions(model_asset_path=self.model_path)
canned_gesture_classifier_options = _ClassifierOptions(score_threshold=.5)
options = _GestureRecognizerOptions(
base_options=base_options,
canned_gesture_classifier_options=canned_gesture_classifier_options)
with _GestureRecognizer.create_from_options(options) as recognizer:
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(self.test_image)
expected_result = _get_expected_gesture_recognition_result(
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL)
# Only contains one top scoring gesture.
self.assertLen(recognition_result.gestures[0], 1)
# Actual gesture with top score matches expected gesture.
actual_top_gesture = recognition_result.gestures[0][0]
expected_top_gesture = expected_result.gestures[0][0]
self.assertEqual(actual_top_gesture.index, expected_top_gesture.index)
self.assertEqual(actual_top_gesture.category_name,
expected_top_gesture.category_name)
def test_recognize_succeeds_with_num_hands(self):
# Creates gesture recognizer.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _GestureRecognizerOptions(base_options=base_options, num_hands=2)
with _GestureRecognizer.create_from_options(options) as recognizer:
# Load the pointing up rotated image.
test_image = _Image.create_from_file(
test_utils.get_test_data_path(_TWO_HANDS_IMAGE))
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(test_image)
# Comparing results.
self.assertLen(recognition_result.handedness, 2)
def test_recognize_succeeds_with_rotation(self):
# Creates gesture recognizer.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _GestureRecognizerOptions(base_options=base_options, num_hands=1)
with _GestureRecognizer.create_from_options(options) as recognizer:
# Load the pointing up rotated image.
test_image = _Image.create_from_file(
test_utils.get_test_data_path(_POINTING_UP_ROTATED_IMAGE))
# Set rotation parameters using ImageProcessingOptions.
image_processing_options = _ImageProcessingOptions(rotation_degrees=-90)
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(test_image,
image_processing_options)
expected_recognition_result = _get_expected_gesture_recognition_result(
_POINTING_UP_ROTATED_LANDMARKS, _POINTING_UP_LABEL)
# Comparing results.
self._assert_actual_result_approximately_matches_expected_result(
recognition_result, expected_recognition_result)
def test_recognize_succeeds_with_canned_gesture_victory(self):
# Creates gesture recognizer.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _GestureRecognizerOptions(base_options=base_options, num_hands=1)
with _GestureRecognizer.create_from_options(options) as recognizer:
# Load the victory image.
test_image = _Image.create_from_file(
test_utils.get_test_data_path(_VICTORY_IMAGE))
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(test_image)
expected_recognition_result = _get_expected_gesture_recognition_result(
_VICTORY_LANDMARKS, _VICTORY_LABEL)
# Comparing results.
self._assert_actual_result_approximately_matches_expected_result(
recognition_result, expected_recognition_result)
def test_recognize_succeeds_with_custom_gesture_rock(self):
# Creates gesture recognizer.
model_path = test_utils.get_test_data_path(
_GESTURE_RECOGNIZER_WITH_CUSTOM_CLASSIFIER_BUNDLE_ASSET_FILE)
base_options = _BaseOptions(model_asset_path=model_path)
options = _GestureRecognizerOptions(base_options=base_options, num_hands=1)
with _GestureRecognizer.create_from_options(options) as recognizer:
# Load the rock image.
test_image = _Image.create_from_file(
test_utils.get_test_data_path(_FIST_IMAGE))
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(test_image)
expected_recognition_result = _get_expected_gesture_recognition_result(
_FIST_LANDMARKS, _ROCK_LABEL)
# Comparing results.
self._assert_actual_result_approximately_matches_expected_result(
recognition_result, expected_recognition_result)
def test_recognize_succeeds_with_allow_gesture_pointing_up(self):
# Creates gesture recognizer.
model_path = test_utils.get_test_data_path(
_GESTURE_RECOGNIZER_WITH_CUSTOM_CLASSIFIER_BUNDLE_ASSET_FILE)
base_options = _BaseOptions(model_asset_path=model_path)
canned_gesture_classifier_options = _ClassifierOptions(
category_allowlist=['Pointing_Up'])
options = _GestureRecognizerOptions(
base_options=base_options,
num_hands=1,
canned_gesture_classifier_options=canned_gesture_classifier_options)
with _GestureRecognizer.create_from_options(options) as recognizer:
# Load the pointing up image.
test_image = _Image.create_from_file(
test_utils.get_test_data_path(_POINTING_UP_IMAGE))
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(test_image)
expected_recognition_result = _get_expected_gesture_recognition_result(
_POINTING_UP_LANDMARKS, _POINTING_UP_LABEL)
# Comparing results.
self._assert_actual_result_approximately_matches_expected_result(
recognition_result, expected_recognition_result)
def test_recognize_succeeds_with_deny_gesture_pointing_up(self):
# Creates gesture recognizer.
model_path = test_utils.get_test_data_path(
_GESTURE_RECOGNIZER_WITH_CUSTOM_CLASSIFIER_BUNDLE_ASSET_FILE)
base_options = _BaseOptions(model_asset_path=model_path)
canned_gesture_classifier_options = _ClassifierOptions(
category_denylist=['Pointing_Up'])
options = _GestureRecognizerOptions(
base_options=base_options,
num_hands=1,
canned_gesture_classifier_options=canned_gesture_classifier_options)
with _GestureRecognizer.create_from_options(options) as recognizer:
# Load the pointing up image.
test_image = _Image.create_from_file(
test_utils.get_test_data_path(_POINTING_UP_IMAGE))
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(test_image)
actual_top_gesture = recognition_result.gestures[0][0]
self.assertEqual(actual_top_gesture.category_name, 'None')
def test_recognize_succeeds_with_allow_all_gestures_except_pointing_up(self):
# Creates gesture recognizer.
model_path = test_utils.get_test_data_path(
_GESTURE_RECOGNIZER_WITH_CUSTOM_CLASSIFIER_BUNDLE_ASSET_FILE)
base_options = _BaseOptions(model_asset_path=model_path)
canned_gesture_classifier_options = _ClassifierOptions(
score_threshold=.5, category_allowlist=[
'None', 'Open_Palm', 'Victory', 'Thumb_Down', 'Thumb_Up',
'ILoveYou', 'Closed_Fist'])
options = _GestureRecognizerOptions(
base_options=base_options,
num_hands=1,
canned_gesture_classifier_options=canned_gesture_classifier_options)
with _GestureRecognizer.create_from_options(options) as recognizer:
# Load the pointing up image.
test_image = _Image.create_from_file(
test_utils.get_test_data_path(_POINTING_UP_IMAGE))
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(test_image)
actual_top_gesture = recognition_result.gestures[0][0]
self.assertEqual(actual_top_gesture.category_name, 'None')
def test_recognize_succeeds_with_prefer_allow_list_than_deny_list(self):
# Creates gesture recognizer.
model_path = test_utils.get_test_data_path(
_GESTURE_RECOGNIZER_WITH_CUSTOM_CLASSIFIER_BUNDLE_ASSET_FILE)
base_options = _BaseOptions(model_asset_path=model_path)
canned_gesture_classifier_options = _ClassifierOptions(
score_threshold=.5, category_allowlist=['Pointing_Up'],
category_denylist=['Pointing_Up'])
options = _GestureRecognizerOptions(
base_options=base_options,
num_hands=1,
canned_gesture_classifier_options=canned_gesture_classifier_options)
with _GestureRecognizer.create_from_options(options) as recognizer:
# Load the pointing up image.
test_image = _Image.create_from_file(
test_utils.get_test_data_path(_POINTING_UP_IMAGE))
# Performs hand gesture recognition on the input.
recognition_result = recognizer.recognize(test_image)
expected_recognition_result = _get_expected_gesture_recognition_result(
_POINTING_UP_LANDMARKS, _POINTING_UP_LABEL)
# Comparing results.
self._assert_actual_result_approximately_matches_expected_result(
recognition_result, expected_recognition_result)
def test_recognize_fails_with_region_of_interest(self):
# Creates gesture recognizer.
base_options = _BaseOptions(model_asset_path=self.model_path)
options = _GestureRecognizerOptions(base_options=base_options, num_hands=1)
with self.assertRaisesRegex(
ValueError, "This task doesn't support region-of-interest."):
with _GestureRecognizer.create_from_options(options) as recognizer:
# Set the `region_of_interest` parameter using `ImageProcessingOptions`.
image_processing_options = _ImageProcessingOptions(
region_of_interest=_Rect(0, 0, 1, 1))
# Attempt to perform hand gesture recognition on the cropped input.
recognizer.recognize(self.test_image, image_processing_options)
def test_empty_recognition_outputs(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path))
with _GestureRecognizer.create_from_options(options) as recognizer:
# Load the image with no hands.
no_hands_test_image = _Image.create_from_file(
test_utils.get_test_data_path(_NO_HANDS_IMAGE))
# Performs gesture recognition on the input.
recognition_result = recognizer.recognize(no_hands_test_image)
self.assertEmpty(recognition_result.hand_landmarks)
self.assertEmpty(recognition_result.hand_world_landmarks)
self.assertEmpty(recognition_result.handedness)
self.assertEmpty(recognition_result.gestures)
def test_missing_result_callback(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.LIVE_STREAM)
with self.assertRaisesRegex(ValueError,
r'result callback must be provided'):
with _GestureRecognizer.create_from_options(options) as unused_recognizer:
pass
@parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO))
def test_illegal_result_callback(self, running_mode):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=running_mode,
result_callback=mock.MagicMock())
with self.assertRaisesRegex(ValueError,
r'result callback should not be provided'):
with _GestureRecognizer.create_from_options(options) as unused_recognizer:
pass
def test_calling_recognize_for_video_in_image_mode(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.IMAGE)
with _GestureRecognizer.create_from_options(options) as recognizer:
with self.assertRaisesRegex(ValueError,
r'not initialized with the video mode'):
recognizer.recognize_for_video(self.test_image, 0)
def test_calling_recognize_async_in_image_mode(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.IMAGE)
with _GestureRecognizer.create_from_options(options) as recognizer:
with self.assertRaisesRegex(ValueError,
r'not initialized with the live stream mode'):
recognizer.recognize_async(self.test_image, 0)
def test_calling_recognize_in_video_mode(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.VIDEO)
with _GestureRecognizer.create_from_options(options) as recognizer:
with self.assertRaisesRegex(ValueError,
r'not initialized with the image mode'):
recognizer.recognize(self.test_image)
def test_calling_recognize_async_in_video_mode(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.VIDEO)
with _GestureRecognizer.create_from_options(options) as recognizer:
with self.assertRaisesRegex(ValueError,
r'not initialized with the live stream mode'):
recognizer.recognize_async(self.test_image, 0)
def test_recognize_for_video_with_out_of_order_timestamp(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.VIDEO)
with _GestureRecognizer.create_from_options(options) as recognizer:
unused_result = recognizer.recognize_for_video(self.test_image, 1)
with self.assertRaisesRegex(
ValueError, r'Input timestamp must be monotonically increasing'):
recognizer.recognize_for_video(self.test_image, 0)
def test_recognize_for_video(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.VIDEO)
with _GestureRecognizer.create_from_options(options) as recognizer:
for timestamp in range(0, 300, 30):
recognition_result = recognizer.recognize_for_video(self.test_image,
timestamp)
expected_recognition_result = _get_expected_gesture_recognition_result(
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL)
self._assert_actual_result_approximately_matches_expected_result(
recognition_result, expected_recognition_result)
def test_calling_recognize_in_live_stream_mode(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.LIVE_STREAM,
result_callback=mock.MagicMock())
with _GestureRecognizer.create_from_options(options) as recognizer:
with self.assertRaisesRegex(ValueError,
r'not initialized with the image mode'):
recognizer.recognize(self.test_image)
def test_calling_recognize_for_video_in_live_stream_mode(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.LIVE_STREAM,
result_callback=mock.MagicMock())
with _GestureRecognizer.create_from_options(options) as recognizer:
with self.assertRaisesRegex(ValueError,
r'not initialized with the video mode'):
recognizer.recognize_for_video(self.test_image, 0)
def test_recognize_async_calls_with_illegal_timestamp(self):
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.LIVE_STREAM,
result_callback=mock.MagicMock())
with _GestureRecognizer.create_from_options(options) as recognizer:
recognizer.recognize_async(self.test_image, 100)
with self.assertRaisesRegex(
ValueError, r'Input timestamp must be monotonically increasing'):
recognizer.recognize_async(self.test_image, 0)
@parameterized.parameters(
(_THUMB_UP_IMAGE, _get_expected_gesture_recognition_result(
_THUMB_UP_LANDMARKS, _THUMB_UP_LABEL)),
(_NO_HANDS_IMAGE, _GestureRecognitionResult([], [], [], [])))
def test_recognize_async_calls(self, image_path, expected_result):
test_image = _Image.create_from_file(
test_utils.get_test_data_path(image_path))
observed_timestamp_ms = -1
def check_result(result: _GestureRecognitionResult, output_image: _Image,
timestamp_ms: int):
if result.hand_landmarks and result.hand_world_landmarks and \
result.handedness and result.gestures:
self._assert_actual_result_approximately_matches_expected_result(
result, expected_result)
else:
self.assertEqual(result, expected_result)
self.assertTrue(
np.array_equal(output_image.numpy_view(),
test_image.numpy_view()))
self.assertLess(observed_timestamp_ms, timestamp_ms)
self.observed_timestamp_ms = timestamp_ms
options = _GestureRecognizerOptions(
base_options=_BaseOptions(model_asset_path=self.model_path),
running_mode=_RUNNING_MODE.LIVE_STREAM,
result_callback=check_result)
with _GestureRecognizer.create_from_options(options) as recognizer:
for timestamp in range(0, 300, 30):
recognizer.recognize_async(test_image, timestamp)
if __name__ == '__main__':
absltest.main()