mediapipe/mediapipe/tasks/python/text/text_embedder.py
2022-11-17 17:20:23 -08:00

181 lines
6.6 KiB
Python

# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MediaPipe text embedder task."""
import dataclasses
from typing import Optional
from mediapipe.python import packet_creator
from mediapipe.python import packet_getter
from mediapipe.tasks.cc.components.containers.proto import embeddings_pb2
from mediapipe.tasks.cc.text.text_embedder.proto import text_embedder_graph_options_pb2
from mediapipe.tasks.python.components.containers import embedding_result as embedding_result_module
from mediapipe.tasks.python.components.processors import embedder_options
from mediapipe.tasks.python.components.utils import cosine_similarity
from mediapipe.tasks.python.core import base_options as base_options_module
from mediapipe.tasks.python.core import task_info as task_info_module
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
from mediapipe.tasks.python.text.core import base_text_task_api
TextEmbedderResult = embedding_result_module.EmbeddingResult
_BaseOptions = base_options_module.BaseOptions
_TextEmbedderGraphOptionsProto = text_embedder_graph_options_pb2.TextEmbedderGraphOptions
_EmbedderOptions = embedder_options.EmbedderOptions
_TaskInfo = task_info_module.TaskInfo
_EMBEDDINGS_OUT_STREAM_NAME = 'embeddings_out'
_EMBEDDINGS_TAG = 'EMBEDDINGS'
_TEXT_IN_STREAM_NAME = 'text_in'
_TEXT_TAG = 'TEXT'
_TASK_GRAPH_NAME = 'mediapipe.tasks.text.text_embedder.TextEmbedderGraph'
@dataclasses.dataclass
class TextEmbedderOptions:
"""Options for the text embedder task.
Attributes:
base_options: Base options for the text embedder task.
embedder_options: Options for the text embedder task.
"""
base_options: _BaseOptions
embedder_options: Optional[_EmbedderOptions] = dataclasses.field(
default_factory=_EmbedderOptions)
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _TextEmbedderGraphOptionsProto:
"""Generates an TextEmbedderOptions protobuf object."""
base_options_proto = self.base_options.to_pb2()
embedder_options_proto = self.embedder_options.to_pb2()
return _TextEmbedderGraphOptionsProto(
base_options=base_options_proto,
embedder_options=embedder_options_proto)
class TextEmbedder(base_text_task_api.BaseTextTaskApi):
"""Class that performs embedding extraction on text.
This API expects a TFLite model with TFLite Model Metadata that contains the
mandatory (described below) input tensors and output tensors. Metadata should
contain the input process unit for the model's Tokenizer as well as input /
output tensor metadata.
Input tensors:
(kTfLiteInt32)
- 3 input tensors of size `[batch_size x bert_max_seq_len]` with names
"ids", "mask", and "segment_ids" representing the input ids, mask ids, and
segment ids respectively.
- or 1 input tensor of size `[batch_size x max_seq_len]` representing the
input ids.
At least one output tensor with:
(kTfLiteFloat32)
- `N` components corresponding to the `N` dimensions of the returned
feature vector for this output layer.
- Either 2 or 4 dimensions, i.e. `[1 x N]` or `[1 x 1 x 1 x N]`.
"""
@classmethod
def create_from_model_path(cls, model_path: str) -> 'TextEmbedder':
"""Creates an `TextEmbedder` object from a TensorFlow Lite model and the default `TextEmbedderOptions`.
Args:
model_path: Path to the model.
Returns:
`TextEmbedder` object that's created from the model file and the default
`TextEmbedderOptions`.
Raises:
ValueError: If failed to create `TextEmbedder` object from the provided
file such as invalid file path.
RuntimeError: If other types of error occurred.
"""
base_options = _BaseOptions(model_asset_path=model_path)
options = TextEmbedderOptions(base_options=base_options)
return cls.create_from_options(options)
@classmethod
def create_from_options(cls, options: TextEmbedderOptions) -> 'TextEmbedder':
"""Creates the `TextEmbedder` object from text embedder options.
Args:
options: Options for the text embedder task.
Returns:
`TextEmbedder` object that's created from `options`.
Raises:
ValueError: If failed to create `TextEmbedder` object from
`TextEmbedderOptions` such as missing the model.
RuntimeError: If other types of error occurred.
"""
task_info = _TaskInfo(
task_graph=_TASK_GRAPH_NAME,
input_streams=[':'.join([_TEXT_TAG, _TEXT_IN_STREAM_NAME])],
output_streams=[
':'.join([_EMBEDDINGS_TAG, _EMBEDDINGS_OUT_STREAM_NAME])
],
task_options=options)
return cls(task_info.generate_graph_config())
def embed(
self,
text: str,
) -> TextEmbedderResult:
"""Performs text embedding extraction on the provided text.
Args:
text: The input text.
Returns:
An embedding result object that contains a list of embeddings.
Raises:
ValueError: If any of the input arguments is invalid.
RuntimeError: If text embedder failed to run.
"""
output_packets = self._runner.process(
{_TEXT_IN_STREAM_NAME: packet_creator.create_string(text)})
embedding_result_proto = embeddings_pb2.EmbeddingResult()
embedding_result_proto.CopyFrom(
packet_getter.get_proto(output_packets[_EMBEDDINGS_OUT_STREAM_NAME]))
return TextEmbedderResult.create_from_pb2(embedding_result_proto)
@classmethod
def cosine_similarity(cls, u: embedding_result_module.Embedding,
v: embedding_result_module.Embedding) -> float:
"""Utility function to compute cosine similarity between two embedding entries.
May return an InvalidArgumentError if e.g. the feature vectors are
of different types (quantized vs. float), have different sizes, or have a
an L2-norm of 0.
Args:
u: An embedding entry.
v: An embedding entry.
Returns:
The cosine similarity for the two embeddings.
Raises:
ValueError: May return an error if e.g. the feature vectors are of
different types (quantized vs. float), have different sizes, or have
an L2-norm of 0.
"""
return cosine_similarity.cosine_similarity(u, v)