181 lines
6.6 KiB
Python
181 lines
6.6 KiB
Python
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""MediaPipe text embedder task."""
|
|
|
|
import dataclasses
|
|
from typing import Optional
|
|
|
|
from mediapipe.python import packet_creator
|
|
from mediapipe.python import packet_getter
|
|
from mediapipe.tasks.cc.components.containers.proto import embeddings_pb2
|
|
from mediapipe.tasks.cc.text.text_embedder.proto import text_embedder_graph_options_pb2
|
|
from mediapipe.tasks.python.components.containers import embedding_result as embedding_result_module
|
|
from mediapipe.tasks.python.components.processors import embedder_options
|
|
from mediapipe.tasks.python.components.utils import cosine_similarity
|
|
from mediapipe.tasks.python.core import base_options as base_options_module
|
|
from mediapipe.tasks.python.core import task_info as task_info_module
|
|
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
|
from mediapipe.tasks.python.text.core import base_text_task_api
|
|
|
|
TextEmbedderResult = embedding_result_module.EmbeddingResult
|
|
_BaseOptions = base_options_module.BaseOptions
|
|
_TextEmbedderGraphOptionsProto = text_embedder_graph_options_pb2.TextEmbedderGraphOptions
|
|
_EmbedderOptions = embedder_options.EmbedderOptions
|
|
_TaskInfo = task_info_module.TaskInfo
|
|
|
|
_EMBEDDINGS_OUT_STREAM_NAME = 'embeddings_out'
|
|
_EMBEDDINGS_TAG = 'EMBEDDINGS'
|
|
_TEXT_IN_STREAM_NAME = 'text_in'
|
|
_TEXT_TAG = 'TEXT'
|
|
_TASK_GRAPH_NAME = 'mediapipe.tasks.text.text_embedder.TextEmbedderGraph'
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class TextEmbedderOptions:
|
|
"""Options for the text embedder task.
|
|
|
|
Attributes:
|
|
base_options: Base options for the text embedder task.
|
|
embedder_options: Options for the text embedder task.
|
|
"""
|
|
base_options: _BaseOptions
|
|
embedder_options: Optional[_EmbedderOptions] = dataclasses.field(
|
|
default_factory=_EmbedderOptions)
|
|
|
|
@doc_controls.do_not_generate_docs
|
|
def to_pb2(self) -> _TextEmbedderGraphOptionsProto:
|
|
"""Generates an TextEmbedderOptions protobuf object."""
|
|
base_options_proto = self.base_options.to_pb2()
|
|
embedder_options_proto = self.embedder_options.to_pb2()
|
|
|
|
return _TextEmbedderGraphOptionsProto(
|
|
base_options=base_options_proto,
|
|
embedder_options=embedder_options_proto)
|
|
|
|
|
|
class TextEmbedder(base_text_task_api.BaseTextTaskApi):
|
|
"""Class that performs embedding extraction on text.
|
|
|
|
This API expects a TFLite model with TFLite Model Metadata that contains the
|
|
mandatory (described below) input tensors and output tensors. Metadata should
|
|
contain the input process unit for the model's Tokenizer as well as input /
|
|
output tensor metadata.
|
|
|
|
Input tensors:
|
|
(kTfLiteInt32)
|
|
- 3 input tensors of size `[batch_size x bert_max_seq_len]` with names
|
|
"ids", "mask", and "segment_ids" representing the input ids, mask ids, and
|
|
segment ids respectively.
|
|
- or 1 input tensor of size `[batch_size x max_seq_len]` representing the
|
|
input ids.
|
|
|
|
At least one output tensor with:
|
|
(kTfLiteFloat32)
|
|
- `N` components corresponding to the `N` dimensions of the returned
|
|
feature vector for this output layer.
|
|
- Either 2 or 4 dimensions, i.e. `[1 x N]` or `[1 x 1 x 1 x N]`.
|
|
"""
|
|
|
|
@classmethod
|
|
def create_from_model_path(cls, model_path: str) -> 'TextEmbedder':
|
|
"""Creates an `TextEmbedder` object from a TensorFlow Lite model and the default `TextEmbedderOptions`.
|
|
|
|
Args:
|
|
model_path: Path to the model.
|
|
|
|
Returns:
|
|
`TextEmbedder` object that's created from the model file and the default
|
|
`TextEmbedderOptions`.
|
|
|
|
Raises:
|
|
ValueError: If failed to create `TextEmbedder` object from the provided
|
|
file such as invalid file path.
|
|
RuntimeError: If other types of error occurred.
|
|
"""
|
|
base_options = _BaseOptions(model_asset_path=model_path)
|
|
options = TextEmbedderOptions(base_options=base_options)
|
|
return cls.create_from_options(options)
|
|
|
|
@classmethod
|
|
def create_from_options(cls, options: TextEmbedderOptions) -> 'TextEmbedder':
|
|
"""Creates the `TextEmbedder` object from text embedder options.
|
|
|
|
Args:
|
|
options: Options for the text embedder task.
|
|
|
|
Returns:
|
|
`TextEmbedder` object that's created from `options`.
|
|
|
|
Raises:
|
|
ValueError: If failed to create `TextEmbedder` object from
|
|
`TextEmbedderOptions` such as missing the model.
|
|
RuntimeError: If other types of error occurred.
|
|
"""
|
|
task_info = _TaskInfo(
|
|
task_graph=_TASK_GRAPH_NAME,
|
|
input_streams=[':'.join([_TEXT_TAG, _TEXT_IN_STREAM_NAME])],
|
|
output_streams=[
|
|
':'.join([_EMBEDDINGS_TAG, _EMBEDDINGS_OUT_STREAM_NAME])
|
|
],
|
|
task_options=options)
|
|
return cls(task_info.generate_graph_config())
|
|
|
|
def embed(
|
|
self,
|
|
text: str,
|
|
) -> TextEmbedderResult:
|
|
"""Performs text embedding extraction on the provided text.
|
|
|
|
Args:
|
|
text: The input text.
|
|
|
|
Returns:
|
|
An embedding result object that contains a list of embeddings.
|
|
|
|
Raises:
|
|
ValueError: If any of the input arguments is invalid.
|
|
RuntimeError: If text embedder failed to run.
|
|
"""
|
|
output_packets = self._runner.process(
|
|
{_TEXT_IN_STREAM_NAME: packet_creator.create_string(text)})
|
|
|
|
embedding_result_proto = embeddings_pb2.EmbeddingResult()
|
|
embedding_result_proto.CopyFrom(
|
|
packet_getter.get_proto(output_packets[_EMBEDDINGS_OUT_STREAM_NAME]))
|
|
|
|
return TextEmbedderResult.create_from_pb2(embedding_result_proto)
|
|
|
|
@classmethod
|
|
def cosine_similarity(cls, u: embedding_result_module.Embedding,
|
|
v: embedding_result_module.Embedding) -> float:
|
|
"""Utility function to compute cosine similarity between two embedding entries.
|
|
|
|
May return an InvalidArgumentError if e.g. the feature vectors are
|
|
of different types (quantized vs. float), have different sizes, or have a
|
|
an L2-norm of 0.
|
|
|
|
Args:
|
|
u: An embedding entry.
|
|
v: An embedding entry.
|
|
|
|
Returns:
|
|
The cosine similarity for the two embeddings.
|
|
|
|
Raises:
|
|
ValueError: May return an error if e.g. the feature vectors are of
|
|
different types (quantized vs. float), have different sizes, or have
|
|
an L2-norm of 0.
|
|
"""
|
|
return cosine_similarity.cosine_similarity(u, v)
|