de5fe27e05
PiperOrigin-RevId: 484407262
148 lines
5.5 KiB
C++
148 lines
5.5 KiB
C++
// Copyright 2020 The MediaPipe Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef MEDIAPIPE_CALCULATORS_TFLITE_TFLITE_GPU_RUNNER_H_
|
|
#define MEDIAPIPE_CALCULATORS_TFLITE_TFLITE_GPU_RUNNER_H_
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "absl/status/status.h"
|
|
#include "mediapipe/framework/port.h"
|
|
#include "mediapipe/framework/port/status.h"
|
|
#include "mediapipe/framework/port/statusor.h"
|
|
#include "tensorflow/lite/core/api/op_resolver.h"
|
|
#include "tensorflow/lite/delegates/gpu/api.h"
|
|
#include "tensorflow/lite/delegates/gpu/common/model.h"
|
|
#include "tensorflow/lite/delegates/gpu/gl/api2.h"
|
|
#include "tensorflow/lite/model.h"
|
|
|
|
#if defined(__ANDROID__) || defined(MEDIAPIPE_CHROMIUMOS)
|
|
#include "tensorflow/lite/delegates/gpu/cl/api.h"
|
|
#endif // defined(__ANDROID__) || defined(MEDIAPIPE_CHROMIUMOS)
|
|
|
|
namespace tflite {
|
|
namespace gpu {
|
|
|
|
// Executes GPU based inference using the TFLite GPU delegate api2.
|
|
// Currently supports only GPU inputs/outputs.
|
|
//
|
|
// Typical order of execution:
|
|
// 1. Initialize with the flatbuffer model using InitializeWithModel().
|
|
// 2. Bind OpenGL SSBO objects as inputs and outputs using
|
|
// BindSSBOToInputTensor() and BindSSBOToOutputTensor().
|
|
// 3. Build the inference runner with Build() method.
|
|
// 4. Invoke() executes the inference, where inputs and outputs are those which
|
|
// were specified earlier. Invoke() may be called in the loop.
|
|
//
|
|
// Note: All of these need to happen inside MediaPipe's RunInGlContext to make
|
|
// sure that all steps from inference construction to execution are made using
|
|
// same OpenGL context.
|
|
class TFLiteGPURunner {
|
|
public:
|
|
explicit TFLiteGPURunner(const InferenceOptions& options)
|
|
: options_(options) {}
|
|
|
|
absl::Status InitializeWithModel(const tflite::FlatBufferModel& flatbuffer,
|
|
const tflite::OpResolver& op_resolver,
|
|
bool allow_quant_ops = false);
|
|
|
|
void ForceOpenGL() { opengl_is_forced_ = true; }
|
|
void ForceOpenCL() { opencl_is_forced_ = true; }
|
|
|
|
absl::Status BindSSBOToInputTensor(GLuint ssbo_id, int input_id);
|
|
absl::Status BindSSBOToOutputTensor(GLuint ssbo_id, int output_id);
|
|
|
|
int inputs_size() const { return input_shapes_.size(); }
|
|
int outputs_size() const { return output_shapes_.size(); }
|
|
|
|
absl::StatusOr<int64_t> GetInputElements(int id);
|
|
absl::StatusOr<int64_t> GetOutputElements(int id);
|
|
|
|
absl::Status Build();
|
|
absl::Status Invoke();
|
|
|
|
std::vector<BHWC> GetInputShapes() { return input_shapes_; }
|
|
std::vector<BHWC> GetOutputShapes() { return output_shapes_; }
|
|
|
|
std::vector<std::vector<int>> GetTFLiteInputShapes() {
|
|
return input_shape_from_model_;
|
|
}
|
|
std::vector<std::vector<int>> GetTFLiteOutputShapes() {
|
|
return output_shape_from_model_;
|
|
}
|
|
|
|
#if defined(__ANDROID__) || defined(MEDIAPIPE_CHROMIUMOS)
|
|
void SetSerializedBinaryCache(std::vector<uint8_t>&& cache) {
|
|
serialized_binary_cache_ = std::move(cache);
|
|
}
|
|
|
|
std::vector<uint8_t> GetSerializedBinaryCache() {
|
|
return cl_environment_->GetSerializedBinaryCache();
|
|
}
|
|
|
|
void SetSerializedModel(std::vector<uint8_t>&& serialized_model) {
|
|
serialized_model_ = std::move(serialized_model);
|
|
serialized_model_used_ = false;
|
|
}
|
|
|
|
absl::StatusOr<std::vector<uint8_t>> GetSerializedModel();
|
|
#endif // defined(__ANDROID__) || defined(MEDIAPIPE_CHROMIUMOS)
|
|
|
|
private:
|
|
absl::Status InitializeOpenGL(std::unique_ptr<InferenceBuilder>* builder);
|
|
absl::Status InitializeOpenCL(std::unique_ptr<InferenceBuilder>* builder);
|
|
#if defined(__ANDROID__) || defined(MEDIAPIPE_CHROMIUMOS)
|
|
absl::Status InitializeOpenCLFromSerializedModel(
|
|
std::unique_ptr<InferenceBuilder>* builder);
|
|
#endif // defined(__ANDROID__) || defined(MEDIAPIPE_CHROMIUMOS)
|
|
|
|
InferenceOptions options_;
|
|
std::unique_ptr<gl::InferenceEnvironment> gl_environment_;
|
|
|
|
#if defined(__ANDROID__) || defined(MEDIAPIPE_CHROMIUMOS)
|
|
std::unique_ptr<cl::InferenceEnvironment> cl_environment_;
|
|
|
|
std::vector<uint8_t> serialized_binary_cache_;
|
|
std::vector<uint8_t> serialized_model_;
|
|
bool serialized_model_used_ = false;
|
|
#endif // defined(__ANDROID__) || defined(MEDIAPIPE_CHROMIUMOS)
|
|
|
|
// graph_gl_ is maintained temporarily and becomes invalid after runner_ is
|
|
// ready
|
|
std::unique_ptr<GraphFloat32> graph_gl_;
|
|
std::unique_ptr<GraphFloat32> graph_cl_;
|
|
std::unique_ptr<InferenceRunner> runner_;
|
|
|
|
// We keep information about input/output shapes, because they are needed
|
|
// after graph_ becomes "converted" into runner_.
|
|
std::vector<BHWC> input_shapes_;
|
|
std::vector<BHWC> output_shapes_;
|
|
|
|
// Input/output shapes above belong to the internal graph representation. It
|
|
// is handy in certain situations to have the original tflite model's
|
|
// input/output shapes, which differ conceptually.
|
|
std::vector<std::vector<int>> input_shape_from_model_;
|
|
std::vector<std::vector<int>> output_shape_from_model_;
|
|
|
|
bool opencl_is_forced_ = false;
|
|
bool opengl_is_forced_ = false;
|
|
};
|
|
|
|
} // namespace gpu
|
|
} // namespace tflite
|
|
|
|
#endif // MEDIAPIPE_CALCULATORS_TFLITE_TFLITE_GPU_RUNNER_H_
|