350fbb2100
GitOrigin-RevId: d073f8e21be2fcc0e503cb97c6695078b6b75310
139 lines
4.8 KiB
C++
139 lines
4.8 KiB
C++
// Copyright 2019 The MediaPipe Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <memory>
|
|
|
|
#include "mediapipe/calculators/util/landmarks_to_detection_calculator.pb.h"
|
|
#include "mediapipe/framework/calculator_framework.h"
|
|
#include "mediapipe/framework/formats/detection.pb.h"
|
|
#include "mediapipe/framework/formats/landmark.pb.h"
|
|
#include "mediapipe/framework/formats/location_data.pb.h"
|
|
#include "mediapipe/framework/port/ret_check.h"
|
|
|
|
namespace mediapipe {
|
|
|
|
namespace {
|
|
|
|
constexpr char kDetectionTag[] = "DETECTION";
|
|
constexpr char kNormalizedLandmarksTag[] = "NORM_LANDMARKS";
|
|
|
|
Detection ConvertLandmarksToDetection(const NormalizedLandmarkList& landmarks) {
|
|
Detection detection;
|
|
LocationData* location_data = detection.mutable_location_data();
|
|
|
|
float x_min = std::numeric_limits<float>::max();
|
|
float x_max = std::numeric_limits<float>::min();
|
|
float y_min = std::numeric_limits<float>::max();
|
|
float y_max = std::numeric_limits<float>::min();
|
|
for (int i = 0; i < landmarks.landmark_size(); ++i) {
|
|
const NormalizedLandmark& landmark = landmarks.landmark(i);
|
|
x_min = std::min(x_min, landmark.x());
|
|
x_max = std::max(x_max, landmark.x());
|
|
y_min = std::min(y_min, landmark.y());
|
|
y_max = std::max(y_max, landmark.y());
|
|
|
|
auto keypoint = location_data->add_relative_keypoints();
|
|
keypoint->set_x(landmark.x());
|
|
keypoint->set_y(landmark.y());
|
|
}
|
|
|
|
location_data->set_format(LocationData::RELATIVE_BOUNDING_BOX);
|
|
LocationData::RelativeBoundingBox* relative_bbox =
|
|
location_data->mutable_relative_bounding_box();
|
|
|
|
relative_bbox->set_xmin(x_min);
|
|
relative_bbox->set_ymin(y_min);
|
|
relative_bbox->set_width(x_max - x_min);
|
|
relative_bbox->set_height(y_max - y_min);
|
|
|
|
return detection;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// Converts NormalizedLandmark to Detection proto. A relative bounding box will
|
|
// be created containing all landmarks exactly. A calculator option is provided
|
|
// to specify a subset of landmarks for creating the detection.
|
|
//
|
|
// Input:
|
|
// NOMR_LANDMARKS: A NormalizedLandmarkList proto.
|
|
//
|
|
// Output:
|
|
// DETECTION: A Detection proto.
|
|
//
|
|
// Example config:
|
|
// node {
|
|
// calculator: "LandmarksToDetectionCalculator"
|
|
// input_stream: "NORM_LANDMARKS:landmarks"
|
|
// output_stream: "DETECTION:detections"
|
|
// }
|
|
class LandmarksToDetectionCalculator : public CalculatorBase {
|
|
public:
|
|
static absl::Status GetContract(CalculatorContract* cc);
|
|
absl::Status Open(CalculatorContext* cc) override;
|
|
|
|
absl::Status Process(CalculatorContext* cc) override;
|
|
|
|
private:
|
|
::mediapipe::LandmarksToDetectionCalculatorOptions options_;
|
|
};
|
|
REGISTER_CALCULATOR(LandmarksToDetectionCalculator);
|
|
|
|
absl::Status LandmarksToDetectionCalculator::GetContract(
|
|
CalculatorContract* cc) {
|
|
RET_CHECK(cc->Inputs().HasTag(kNormalizedLandmarksTag));
|
|
RET_CHECK(cc->Outputs().HasTag(kDetectionTag));
|
|
// TODO: Also support converting Landmark to Detection.
|
|
cc->Inputs().Tag(kNormalizedLandmarksTag).Set<NormalizedLandmarkList>();
|
|
cc->Outputs().Tag(kDetectionTag).Set<Detection>();
|
|
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status LandmarksToDetectionCalculator::Open(CalculatorContext* cc) {
|
|
cc->SetOffset(TimestampDiff(0));
|
|
|
|
options_ = cc->Options<::mediapipe::LandmarksToDetectionCalculatorOptions>();
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status LandmarksToDetectionCalculator::Process(CalculatorContext* cc) {
|
|
const auto& landmarks =
|
|
cc->Inputs().Tag(kNormalizedLandmarksTag).Get<NormalizedLandmarkList>();
|
|
RET_CHECK_GT(landmarks.landmark_size(), 0)
|
|
<< "Input landmark vector is empty.";
|
|
|
|
auto detection = absl::make_unique<Detection>();
|
|
if (options_.selected_landmark_indices_size()) {
|
|
NormalizedLandmarkList subset_landmarks;
|
|
for (int i = 0; i < options_.selected_landmark_indices_size(); ++i) {
|
|
RET_CHECK_LT(options_.selected_landmark_indices(i),
|
|
landmarks.landmark_size())
|
|
<< "Index of landmark subset is out of range.";
|
|
*subset_landmarks.add_landmark() =
|
|
landmarks.landmark(options_.selected_landmark_indices(i));
|
|
}
|
|
*detection = ConvertLandmarksToDetection(subset_landmarks);
|
|
} else {
|
|
*detection = ConvertLandmarksToDetection(landmarks);
|
|
}
|
|
cc->Outputs()
|
|
.Tag(kDetectionTag)
|
|
.Add(detection.release(), cc->InputTimestamp());
|
|
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
} // namespace mediapipe
|