mediapipe/gradio/demo.py
2021-06-10 22:26:43 +00:00

31 lines
1.1 KiB
Python

import mediapipe as mp
import gradio as gr
mp_face_mesh = mp.solutions.face_mesh
# Prepare DrawingSpec for drawing the face landmarks later.
mp_drawing = mp.solutions.drawing_utils
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
# Run MediaPipe Face Mesh.
def inference(image):
with mp_face_mesh.FaceMesh(
static_image_mode=True,
max_num_faces=2,
min_detection_confidence=0.5) as face_mesh:
# Convert the BGR image to RGB and process it with MediaPipe Face Mesh.
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Draw face landmarks of each face.
print(f'Face landmarks of {name}:')
if not results.multi_face_landmarks:
continue
annotated_image = image.copy()
for face_landmarks in results.multi_face_landmarks:
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACE_CONNECTIONS,
landmark_drawing_spec=drawing_spec,
connection_drawing_spec=drawing_spec)
return annotated_image