mediapipe/mediapipe/util/tflite/tflite_gpu_runner.h
MediaPipe Team b6e680647c Project import generated by Copybara.
GitOrigin-RevId: d1277f8cb42aa228165e96775687ff2e0effffcf
2020-04-24 16:32:37 -07:00

86 lines
3.1 KiB
C++

// Copyright 2020 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef MEDIAPIPE_CALCULATORS_TFLITE_TFLITE_GPU_RUNNER_H_
#define MEDIAPIPE_CALCULATORS_TFLITE_TFLITE_GPU_RUNNER_H_
#include <cstdint>
#include <memory>
#include <vector>
#include "mediapipe/framework/port/status.h"
#include "mediapipe/framework/port/statusor.h"
#include "tensorflow/lite/delegates/gpu/api.h"
#include "tensorflow/lite/delegates/gpu/common/model.h"
#include "tensorflow/lite/delegates/gpu/gl/api2.h"
#include "tensorflow/lite/model.h"
namespace tflite {
namespace gpu {
// Executes GPU based inference using the TFLite GPU delegate api2.
// Currently supports only GPU inputs/outputs.
//
// Typical order of execution:
// 1. Initialize with the flatbuffer model using InitializeWithModel().
// 2. Bind OpenGL SSBO objects as inputs and outputs using
// BindSSBOToInputTensor() and BindSSBOToOutputTensor().
// 3. Build the inference runner with Build() method.
// 4. Invoke() executes the inference, where inputs and outputs are those which
// were specified earlier. Invoke() may be called in the loop.
//
// Note: All of these need to happen inside MediaPipe's RunInGlContext to make
// sure that all steps from inference construction to execution are made using
// same OpenGL context.
class TFLiteGPURunner {
public:
explicit TFLiteGPURunner(const InferenceOptions& options)
: options_(options) {}
mediapipe::Status InitializeWithModel(
const tflite::FlatBufferModel& flatbuffer);
mediapipe::Status BindSSBOToInputTensor(GLuint ssbo_id, int input_id);
mediapipe::Status BindSSBOToOutputTensor(GLuint ssbo_id, int output_id);
int inputs_size() const { return input_shapes_.size(); }
int outputs_size() const { return output_shapes_.size(); }
mediapipe::StatusOr<int64_t> GetInputElements(int id);
mediapipe::StatusOr<int64_t> GetOutputElements(int id);
mediapipe::Status Build();
mediapipe::Status Invoke();
private:
mediapipe::Status InitializeOpenGL(
std::unique_ptr<InferenceBuilder>* builder);
InferenceOptions options_;
std::unique_ptr<gl::InferenceEnvironment> gl_environment_;
// graph_ is maintained temporarily and becomes invalid after runner_ is ready
std::unique_ptr<GraphFloat32> graph_;
std::unique_ptr<InferenceRunner> runner_;
// We keep information about input/output shapes, because they are needed
// after graph_ becomes "converted" into runner_.
std::vector<BHWC> input_shapes_;
std::vector<BHWC> output_shapes_;
};
} // namespace gpu
} // namespace tflite
#endif // MEDIAPIPE_CALCULATORS_TFLITE_TFLITE_GPU_RUNNER_H_