mediapipe/mediapipe/modules/face_detection/face_detection_front_cpu.pbtxt

146 lines
4.5 KiB
Plaintext

# MediaPipe graph to detect faces. (CPU input, and inference is executed on
# CPU.)
#
# It is required that "face_detection_front.tflite" is available at
# "mediapipe/modules/face_detection/face_detection_front.tflite"
# path during execution.
#
# EXAMPLE:
# node {
# calculator: "FaceDetectionFrontCpu"
# input_stream: "IMAGE:image"
# output_stream: "DETECTIONS:face_detections"
# }
type: "FaceDetectionFrontCpu"
# CPU image. (ImageFrame)
input_stream: "IMAGE:image"
# Detected faces. (std::vector<Detection>)
# NOTE: there will not be an output packet in the DETECTIONS stream for this
# particular timestamp if none of faces detected. However, the MediaPipe
# framework will internally inform the downstream calculators of the absence of
# this packet so that they don't wait for it unnecessarily.
output_stream: "DETECTIONS:detections"
# Transforms the input image on CPU to a 128x128 image. To scale the input
# image, the scale_mode option is set to FIT to preserve the aspect ratio
# (what is expected by the corresponding face detection model), resulting in
# potential letterboxing in the transformed image.
node: {
calculator: "ImageTransformationCalculator"
input_stream: "IMAGE:image"
output_stream: "IMAGE:transformed_image"
output_stream: "LETTERBOX_PADDING:letterbox_padding"
options: {
[mediapipe.ImageTransformationCalculatorOptions.ext] {
output_width: 128
output_height: 128
scale_mode: FIT
}
}
}
# Converts the transformed input image on CPU into an image tensor stored as a
# TfLiteTensor.
node {
calculator: "TfLiteConverterCalculator"
input_stream: "IMAGE:transformed_image"
output_stream: "TENSORS:input_tensors"
}
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
# vector of tensors representing, for instance, detection boxes/keypoints and
# scores.
node {
calculator: "TfLiteInferenceCalculator"
input_stream: "TENSORS:input_tensors"
output_stream: "TENSORS:detection_tensors"
options: {
[mediapipe.TfLiteInferenceCalculatorOptions.ext] {
model_path: "mediapipe/modules/face_detection/face_detection_front.tflite"
delegate { xnnpack {} }
}
}
}
# Generates a single side packet containing a vector of SSD anchors based on
# the specification in the options.
node {
calculator: "SsdAnchorsCalculator"
output_side_packet: "anchors"
options: {
[mediapipe.SsdAnchorsCalculatorOptions.ext] {
num_layers: 4
min_scale: 0.1484375
max_scale: 0.75
input_size_height: 128
input_size_width: 128
anchor_offset_x: 0.5
anchor_offset_y: 0.5
strides: 8
strides: 16
strides: 16
strides: 16
aspect_ratios: 1.0
fixed_anchor_size: true
}
}
}
# Decodes the detection tensors generated by the TensorFlow Lite model, based on
# the SSD anchors and the specification in the options, into a vector of
# detections. Each detection describes a detected object.
node {
calculator: "TfLiteTensorsToDetectionsCalculator"
input_stream: "TENSORS:detection_tensors"
input_side_packet: "ANCHORS:anchors"
output_stream: "DETECTIONS:unfiltered_detections"
options: {
[mediapipe.TfLiteTensorsToDetectionsCalculatorOptions.ext] {
num_classes: 1
num_boxes: 896
num_coords: 16
box_coord_offset: 0
keypoint_coord_offset: 4
num_keypoints: 6
num_values_per_keypoint: 2
sigmoid_score: true
score_clipping_thresh: 100.0
reverse_output_order: true
x_scale: 128.0
y_scale: 128.0
h_scale: 128.0
w_scale: 128.0
min_score_thresh: 0.5
}
}
}
# Performs non-max suppression to remove excessive detections.
node {
calculator: "NonMaxSuppressionCalculator"
input_stream: "unfiltered_detections"
output_stream: "filtered_detections"
options: {
[mediapipe.NonMaxSuppressionCalculatorOptions.ext] {
min_suppression_threshold: 0.3
overlap_type: INTERSECTION_OVER_UNION
algorithm: WEIGHTED
error_on_empty_detections: true
}
}
}
# Adjusts detection locations (already normalized to [0.f, 1.f]) on the
# letterboxed image (after image transformation with the FIT scale mode) to the
# corresponding locations on the same image with the letterbox removed (the
# input image to the graph before image transformation).
node {
calculator: "DetectionLetterboxRemovalCalculator"
input_stream: "DETECTIONS:filtered_detections"
input_stream: "LETTERBOX_PADDING:letterbox_padding"
output_stream: "DETECTIONS:detections"
}