This conversion is to support running the model on both GPU and CPU. PiperOrigin-RevId: 528400297
235 lines
8.2 KiB
Python
235 lines
8.2 KiB
Python
# Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""APIs to train face stylization model."""
|
|
|
|
import os
|
|
from typing import Callable, Optional
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from mediapipe.model_maker.python.core.data import classification_dataset as classification_ds
|
|
from mediapipe.model_maker.python.core.utils import loss_functions
|
|
from mediapipe.model_maker.python.core.utils import model_util
|
|
from mediapipe.model_maker.python.vision.core import image_preprocessing
|
|
from mediapipe.model_maker.python.vision.face_stylizer import constants
|
|
from mediapipe.model_maker.python.vision.face_stylizer import face_stylizer_options
|
|
from mediapipe.model_maker.python.vision.face_stylizer import hyperparameters as hp
|
|
from mediapipe.model_maker.python.vision.face_stylizer import model_options as model_opt
|
|
from mediapipe.model_maker.python.vision.face_stylizer import model_spec as ms
|
|
|
|
|
|
class FaceStylizer(object):
|
|
"""FaceStylizer for building face stylization model.
|
|
|
|
Attributes:
|
|
w_avg: An average face latent code to regularize face generation in face
|
|
stylization.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_spec: ms.ModelSpec,
|
|
model_options: model_opt.FaceStylizerModelOptions,
|
|
hparams: hp.HParams,
|
|
):
|
|
"""Initializes face stylizer.
|
|
|
|
Args:
|
|
model_spec: Specification for the model.
|
|
model_options: Model options for creating face stylizer.
|
|
hparams: The hyperparameters for training face stylizer.
|
|
"""
|
|
self._model_spec = model_spec
|
|
self._model_options = model_options
|
|
self._hparams = hparams
|
|
# TODO: Support face alignment in image preprocessor.
|
|
self._preprocessor = image_preprocessing.Preprocessor(
|
|
input_shape=self._model_spec.input_image_shape,
|
|
num_classes=1,
|
|
mean_rgb=self._model_spec.mean_rgb,
|
|
stddev_rgb=self._model_spec.stddev_rgb,
|
|
)
|
|
|
|
@classmethod
|
|
def create(
|
|
cls,
|
|
train_data: classification_ds.ClassificationDataset,
|
|
options: face_stylizer_options.FaceStylizerOptions,
|
|
) -> 'FaceStylizer':
|
|
"""Creates and trains a face stylizer with input datasets.
|
|
|
|
Args:
|
|
train_data: The input style image dataset for training the face stylizer.
|
|
options: The options to configure face stylizer.
|
|
|
|
Returns:
|
|
A FaceStylizer instant with the trained model.
|
|
"""
|
|
if options.model_options is None:
|
|
options.model_options = model_opt.FaceStylizerModelOptions()
|
|
|
|
if options.hparams is None:
|
|
options.hparams = hp.HParams()
|
|
|
|
spec = ms.SupportedModels.get(options.model)
|
|
|
|
face_stylizer = cls(
|
|
model_spec=spec,
|
|
model_options=options.model_options,
|
|
hparams=options.hparams,
|
|
)
|
|
face_stylizer._create_and_train_model(train_data)
|
|
return face_stylizer
|
|
|
|
def _create_and_train_model(
|
|
self, train_data: classification_ds.ClassificationDataset
|
|
):
|
|
"""Creates and trains the face stylizer model.
|
|
|
|
Args:
|
|
train_data: Training data.
|
|
"""
|
|
self._create_model()
|
|
self._train_model(train_data=train_data, preprocessor=self._preprocessor)
|
|
|
|
def _create_model(self):
|
|
"""Creates the componenets of face stylizer."""
|
|
self._encoder = model_util.load_keras_model(
|
|
constants.FACE_STYLIZER_ENCODER_MODEL_FILES.get_path()
|
|
)
|
|
self._decoder = model_util.load_keras_model(
|
|
constants.FACE_STYLIZER_DECODER_MODEL_FILES.get_path()
|
|
)
|
|
self._mapping_network = model_util.load_keras_model(
|
|
constants.FACE_STYLIZER_MAPPING_MODEL_FILES.get_path()
|
|
)
|
|
self._discriminator = model_util.load_keras_model(
|
|
constants.FACE_STYLIZER_DISCRIMINATOR_MODEL_FILES.get_path()
|
|
)
|
|
with tf.io.gfile.GFile(
|
|
constants.FACE_STYLIZER_W_FILES.get_path(), 'rb'
|
|
) as f:
|
|
w_avg = np.load(f)
|
|
|
|
self.w_avg = w_avg[: self._model_spec.style_block_num][np.newaxis]
|
|
|
|
def _train_model(
|
|
self,
|
|
train_data: classification_ds.ClassificationDataset,
|
|
preprocessor: Optional[Callable[..., bool]] = None,
|
|
):
|
|
"""Trains the face stylizer model.
|
|
|
|
Args:
|
|
train_data: The data for training model.
|
|
preprocessor: The image preprocessor.
|
|
"""
|
|
train_dataset = train_data.gen_tf_dataset(preprocess=preprocessor)
|
|
|
|
# TODO: Support processing mulitple input style images. The
|
|
# input style images are expected to have similar style.
|
|
# style_sample represents a tuple of (style_image, style_label).
|
|
style_sample = next(iter(train_dataset))
|
|
style_img = style_sample[0]
|
|
|
|
batch_size = self._hparams.batch_size
|
|
label_in = tf.zeros(shape=[batch_size, 0])
|
|
|
|
style_encoding = self._encoder(style_img)
|
|
|
|
optimizer = tf.keras.optimizers.Adam(
|
|
learning_rate=self._hparams.learning_rate,
|
|
beta_1=self._hparams.beta_1,
|
|
beta_2=self._hparams.beta_2,
|
|
)
|
|
|
|
image_perceptual_quality_loss = loss_functions.ImagePerceptualQualityLoss(
|
|
loss_weight=self._model_options.perception_loss_weight
|
|
)
|
|
|
|
for i in range(self._hparams.epochs):
|
|
noise = tf.random.normal(shape=[batch_size, constants.STYLE_DIM])
|
|
|
|
mean_w = self._mapping_network([noise, label_in], training=False)[
|
|
:, : self._model_spec.style_block_num
|
|
]
|
|
style_encodings = tf.tile(style_encoding, [batch_size, 1, 1])
|
|
|
|
in_latent = tf.Variable(tf.identity(style_encodings))
|
|
|
|
alpha = self._model_options.alpha
|
|
for swap_layer in self._model_options.swap_layers:
|
|
in_latent = in_latent[:, swap_layer].assign(
|
|
alpha * style_encodings[:, swap_layer]
|
|
+ (1 - alpha) * mean_w[:, swap_layer]
|
|
)
|
|
|
|
with tf.GradientTape() as tape:
|
|
outputs = self._decoder(
|
|
{'inputs': in_latent + self.w_avg},
|
|
training=True,
|
|
)
|
|
gen_img = outputs['image'][-1]
|
|
|
|
real_feature = self._discriminator(
|
|
[tf.transpose(style_img, [0, 3, 1, 2]), label_in]
|
|
)
|
|
gen_feature = self._discriminator(
|
|
[tf.transpose(gen_img, [0, 3, 1, 2]), label_in]
|
|
)
|
|
|
|
style_loss = image_perceptual_quality_loss(gen_img, style_img)
|
|
style_loss += (
|
|
tf.keras.losses.MeanAbsoluteError()(real_feature, gen_feature)
|
|
* self._model_options.adv_loss_weight
|
|
)
|
|
tf.compat.v1.logging.info(f'Iteration {i} loss: {style_loss.numpy()}')
|
|
|
|
tvars = self._decoder.trainable_variables
|
|
grads = tape.gradient(style_loss, tvars)
|
|
optimizer.apply_gradients(list(zip(grads, tvars)))
|
|
|
|
# TODO: Add a metadata writer for face sytlizer model.
|
|
def export_model(self, model_name: str = 'model.tflite'):
|
|
"""Converts and saves the model to a TFLite file with metadata included.
|
|
|
|
Note that only the TFLite file is needed for deployment. This function
|
|
also saves a metadata.json file to the same directory as the TFLite file
|
|
which can be used to interpret the metadata content in the TFLite file.
|
|
|
|
Args:
|
|
model_name: File name to save TFLite model with metadata. The full export
|
|
path is {self._hparams.export_dir}/{model_name}.
|
|
"""
|
|
if not tf.io.gfile.exists(self._hparams.export_dir):
|
|
tf.io.gfile.makedirs(self._hparams.export_dir)
|
|
tflite_file = os.path.join(self._hparams.export_dir, model_name)
|
|
|
|
# Create an end-to-end model by concatenating encoder and decoder
|
|
inputs = tf.keras.Input(shape=(256, 256, 3))
|
|
x = self._encoder(inputs)
|
|
x = self._decoder({'inputs': x + self.w_avg})
|
|
x = x['image'][-1]
|
|
# Scale the data range from [-1, 1] to [0, 1] to support running inference
|
|
# on both CPU and GPU.
|
|
outputs = (x + 1.0) / 2.0
|
|
model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
|
|
|
tflite_model = model_util.convert_to_tflite(
|
|
model=model,
|
|
preprocess=self._preprocessor,
|
|
)
|
|
model_util.save_tflite(tflite_model, tflite_file)
|