mediapipe/mediapipe/model_maker/python/text/text_classifier/model_spec.py
MediaPipe Team c2ac040a6c Adds a public import API for TextClassifier.
PiperOrigin-RevId: 487949023
2022-11-11 16:52:16 -08:00

71 lines
2.5 KiB
Python

# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Specifications for text classifier models."""
import dataclasses
import enum
import functools
from mediapipe.model_maker.python.core import hyperparameters as hp
from mediapipe.model_maker.python.text.core import bert_model_spec
from mediapipe.model_maker.python.text.text_classifier import model_options as mo
# BERT-based text classifier spec inherited from BertModelSpec
BertClassifierSpec = bert_model_spec.BertModelSpec
@dataclasses.dataclass
class AverageWordEmbeddingClassifierSpec:
"""Specification for an average word embedding classifier model.
Attributes:
hparams: Configurable hyperparameters for training.
model_options: Configurable options for the average word embedding model.
name: The name of the object.
"""
# `learning_rate` is unused for the average word embedding model
hparams: hp.BaseHParams = hp.BaseHParams(
epochs=10, batch_size=32, learning_rate=0)
model_options: mo.AverageWordEmbeddingClassifierModelOptions = (
mo.AverageWordEmbeddingClassifierModelOptions())
name: str = 'AverageWordEmbedding'
average_word_embedding_classifier_spec = functools.partial(
AverageWordEmbeddingClassifierSpec)
mobilebert_classifier_spec = functools.partial(
BertClassifierSpec,
hparams=hp.BaseHParams(
epochs=3,
batch_size=48,
learning_rate=3e-5,
distribution_strategy='off'),
name='MobileBert',
uri='https://tfhub.dev/tensorflow/mobilebert_en_uncased_L-24_H-128_B-512_A-4_F-4_OPT/1',
tflite_input_name={
'ids': 'serving_default_input_1:0',
'mask': 'serving_default_input_3:0',
'segment_ids': 'serving_default_input_2:0'
},
)
@enum.unique
class SupportedModels(enum.Enum):
"""Predefined text classifier model specs supported by Model Maker."""
AVERAGE_WORD_EMBEDDING_CLASSIFIER = average_word_embedding_classifier_spec
MOBILEBERT_CLASSIFIER = mobilebert_classifier_spec