mediapipe/mediapipe/model_maker/python/text/text_classifier/model_spec.py
Yilei Yang 917af2ce6b Internal change
PiperOrigin-RevId: 547346939
2023-07-11 17:52:07 -07:00

110 lines
3.6 KiB
Python

# Copyright 2022 The MediaPipe Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Specifications for text classifier models."""
import dataclasses
import enum
import functools
from mediapipe.model_maker.python.core.utils import file_util
from mediapipe.model_maker.python.text.core import bert_model_spec
from mediapipe.model_maker.python.text.text_classifier import hyperparameters as hp
from mediapipe.model_maker.python.text.text_classifier import model_options as mo
MOBILEBERT_TINY_FILES = file_util.DownloadedFiles(
'text_classifier/mobilebert_tiny',
'https://storage.googleapis.com/mediapipe-assets/mobilebert_tiny.tar.gz',
is_folder=True,
)
EXBERT_FILES = file_util.DownloadedFiles(
'text_classifier/exbert',
'https://storage.googleapis.com/mediapipe-assets/exbert.tar.gz',
is_folder=True,
)
@dataclasses.dataclass
class AverageWordEmbeddingClassifierSpec:
"""Specification for an average word embedding classifier model.
Attributes:
hparams: Configurable hyperparameters for training.
model_options: Configurable options for the average word embedding model.
name: The name of the object.
"""
# `learning_rate` is unused for the average word embedding model
hparams: hp.AverageWordEmbeddingHParams = dataclasses.field(
default_factory=lambda: hp.AverageWordEmbeddingHParams(
epochs=10, batch_size=32, learning_rate=0
)
)
model_options: mo.AverageWordEmbeddingModelOptions = dataclasses.field(
default_factory=mo.AverageWordEmbeddingModelOptions
)
name: str = 'AverageWordEmbedding'
average_word_embedding_classifier_spec = functools.partial(
AverageWordEmbeddingClassifierSpec)
@dataclasses.dataclass
class BertClassifierSpec(bert_model_spec.BertModelSpec):
"""Specification for a Bert classifier model.
Only overrides the hparams attribute since the rest of the attributes are
inherited from the BertModelSpec.
"""
hparams: hp.BertHParams = dataclasses.field(default_factory=hp.BertHParams)
mobilebert_classifier_spec = functools.partial(
BertClassifierSpec,
downloaded_files=MOBILEBERT_TINY_FILES,
hparams=hp.BertHParams(
epochs=3, batch_size=48, learning_rate=3e-5, distribution_strategy='off'
),
name='MobileBert',
tflite_input_name={
'ids': 'serving_default_input_1:0',
'segment_ids': 'serving_default_input_2:0',
'mask': 'serving_default_input_3:0',
},
)
exbert_classifier_spec = functools.partial(
BertClassifierSpec,
downloaded_files=EXBERT_FILES,
hparams=hp.BertHParams(
epochs=3, batch_size=48, learning_rate=3e-5, distribution_strategy='off'
),
name='ExBert',
tflite_input_name={
'ids': 'serving_default_input_1:0',
'segment_ids': 'serving_default_input_2:0',
'mask': 'serving_default_input_3:0',
},
)
@enum.unique
class SupportedModels(enum.Enum):
"""Predefined text classifier model specs supported by Model Maker."""
AVERAGE_WORD_EMBEDDING_CLASSIFIER = average_word_embedding_classifier_spec
MOBILEBERT_CLASSIFIER = mobilebert_classifier_spec
EXBERT_CLASSIFIER = exbert_classifier_spec