400 lines
15 KiB
Python
400 lines
15 KiB
Python
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""MediaPipe image segmenter task."""
|
|
|
|
import dataclasses
|
|
import enum
|
|
from typing import Callable, List, Mapping, Optional
|
|
|
|
from mediapipe.python import packet_creator
|
|
from mediapipe.python import packet_getter
|
|
from mediapipe.python._framework_bindings import image as image_module
|
|
from mediapipe.python._framework_bindings import packet
|
|
from mediapipe.tasks.cc.vision.image_segmenter.calculators import tensors_to_segmentation_calculator_pb2
|
|
from mediapipe.tasks.cc.vision.image_segmenter.proto import image_segmenter_graph_options_pb2
|
|
from mediapipe.tasks.cc.vision.image_segmenter.proto import segmenter_options_pb2
|
|
from mediapipe.tasks.python.components.containers import rect
|
|
from mediapipe.tasks.python.core import base_options as base_options_module
|
|
from mediapipe.tasks.python.core import task_info as task_info_module
|
|
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
|
|
from mediapipe.tasks.python.vision.core import base_vision_task_api
|
|
from mediapipe.tasks.python.vision.core import image_processing_options as image_processing_options_module
|
|
from mediapipe.tasks.python.vision.core import vision_task_running_mode
|
|
|
|
ImageSegmenterResult = List[image_module.Image]
|
|
_NormalizedRect = rect.NormalizedRect
|
|
_BaseOptions = base_options_module.BaseOptions
|
|
_SegmenterOptionsProto = segmenter_options_pb2.SegmenterOptions
|
|
_ImageSegmenterGraphOptionsProto = (
|
|
image_segmenter_graph_options_pb2.ImageSegmenterGraphOptions
|
|
)
|
|
TensorsToSegmentationCalculatorOptionsProto = (
|
|
tensors_to_segmentation_calculator_pb2.TensorsToSegmentationCalculatorOptions
|
|
)
|
|
_RunningMode = vision_task_running_mode.VisionTaskRunningMode
|
|
_ImageProcessingOptions = image_processing_options_module.ImageProcessingOptions
|
|
_TaskInfo = task_info_module.TaskInfo
|
|
|
|
_SEGMENTATION_OUT_STREAM_NAME = 'segmented_mask_out'
|
|
_SEGMENTATION_TAG = 'GROUPED_SEGMENTATION'
|
|
_IMAGE_IN_STREAM_NAME = 'image_in'
|
|
_IMAGE_OUT_STREAM_NAME = 'image_out'
|
|
_IMAGE_TAG = 'IMAGE'
|
|
_NORM_RECT_STREAM_NAME = 'norm_rect_in'
|
|
_NORM_RECT_TAG = 'NORM_RECT'
|
|
_TENSORS_TO_SEGMENTATION_CALCULATOR_NAME = 'mediapipe.tasks.TensorsToSegmentationCalculator'
|
|
_TASK_GRAPH_NAME = 'mediapipe.tasks.vision.image_segmenter.ImageSegmenterGraph'
|
|
_MICRO_SECONDS_PER_MILLISECOND = 1000
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ImageSegmenterOptions:
|
|
"""Options for the image segmenter task.
|
|
|
|
Attributes:
|
|
base_options: Base options for the image segmenter task.
|
|
running_mode: The running mode of the task. Default to the image mode. Image
|
|
segmenter task has three running modes: 1) The image mode for segmenting
|
|
objects on single image inputs. 2) The video mode for segmenting objects
|
|
on the decoded frames of a video. 3) The live stream mode for segmenting
|
|
objects on a live stream of input data, such as from camera.
|
|
output_type: The output mask type allows specifying the type of
|
|
post-processing to perform on the raw model results.
|
|
activation: Activation function to apply to input tensor.
|
|
result_callback: The user-defined result callback for processing live stream
|
|
data. The result callback should only be specified when the running mode
|
|
is set to the live stream mode.
|
|
"""
|
|
|
|
class OutputType(enum.Enum):
|
|
UNSPECIFIED = 0
|
|
CATEGORY_MASK = 1
|
|
CONFIDENCE_MASK = 2
|
|
|
|
class Activation(enum.Enum):
|
|
NONE = 0
|
|
SIGMOID = 1
|
|
SOFTMAX = 2
|
|
|
|
base_options: _BaseOptions
|
|
running_mode: _RunningMode = _RunningMode.IMAGE
|
|
output_type: Optional[OutputType] = OutputType.CATEGORY_MASK
|
|
activation: Optional[Activation] = Activation.NONE
|
|
result_callback: Optional[
|
|
Callable[[ImageSegmenterResult, image_module.Image, int], None]
|
|
] = None
|
|
|
|
@doc_controls.do_not_generate_docs
|
|
def to_pb2(self) -> _ImageSegmenterGraphOptionsProto:
|
|
"""Generates an ImageSegmenterOptions protobuf object."""
|
|
base_options_proto = self.base_options.to_pb2()
|
|
base_options_proto.use_stream_mode = (
|
|
False if self.running_mode == _RunningMode.IMAGE else True
|
|
)
|
|
segmenter_options_proto = _SegmenterOptionsProto(
|
|
output_type=self.output_type.value, activation=self.activation.value
|
|
)
|
|
return _ImageSegmenterGraphOptionsProto(
|
|
base_options=base_options_proto,
|
|
segmenter_options=segmenter_options_proto,
|
|
)
|
|
|
|
|
|
class ImageSegmenter(base_vision_task_api.BaseVisionTaskApi):
|
|
"""Class that performs image segmentation on images.
|
|
|
|
The API expects a TFLite model with mandatory TFLite Model Metadata.
|
|
|
|
Input tensor:
|
|
(kTfLiteUInt8/kTfLiteFloat32)
|
|
- image input of size `[batch x height x width x channels]`.
|
|
- batch inference is not supported (`batch` is required to be 1).
|
|
- RGB and greyscale inputs are supported (`channels` is required to be
|
|
1 or 3).
|
|
- if type is kTfLiteFloat32, NormalizationOptions are required to be
|
|
attached to the metadata for input normalization.
|
|
Output tensors:
|
|
(kTfLiteUInt8/kTfLiteFloat32)
|
|
- list of segmented masks.
|
|
- if `output_type` is CATEGORY_MASK, uint8 Image, Image vector of size 1.
|
|
- if `output_type` is CONFIDENCE_MASK, float32 Image list of size
|
|
`channels`.
|
|
- batch is always 1
|
|
|
|
An example of such model can be found at:
|
|
https://tfhub.dev/tensorflow/lite-model/deeplabv3/1/metadata/2
|
|
"""
|
|
def __init__(self, graph_config, running_mode, packet_callback):
|
|
super(ImageSegmenter, self).__init__(
|
|
graph_config, running_mode, packet_callback
|
|
)
|
|
self._populate_labels()
|
|
|
|
def _populate_labels(self):
|
|
"""
|
|
Populate the labelmap in TensorsToSegmentationCalculator to labels field.
|
|
|
|
Returns:
|
|
Exception if there is an error during finding TensorsToSegmentationCalculator.
|
|
:return:
|
|
"""
|
|
self.labels = []
|
|
graph_config = self._runner.get_graph_config()
|
|
found_tensors_to_segmentation = False
|
|
|
|
for node in graph_config.node:
|
|
if _TENSORS_TO_SEGMENTATION_CALCULATOR_NAME in node.name:
|
|
if found_tensors_to_segmentation:
|
|
raise Exception(
|
|
f"The graph has more than one "
|
|
f"{_TENSORS_TO_SEGMENTATION_CALCULATOR_NAME}."
|
|
)
|
|
found_tensors_to_segmentation = True
|
|
options = node.options.Extensions[
|
|
TensorsToSegmentationCalculatorOptionsProto.ext
|
|
]
|
|
if options.label_items:
|
|
for i in range(len(options.label_items)):
|
|
if i not in options.label_items:
|
|
raise Exception(f"The labelmap has no expected key: {i}.")
|
|
self.labels.append(options.label_items[i].name)
|
|
|
|
@classmethod
|
|
def create_from_model_path(cls, model_path: str) -> 'ImageSegmenter':
|
|
"""Creates an `ImageSegmenter` object from a TensorFlow Lite model and the default `ImageSegmenterOptions`.
|
|
|
|
Note that the created `ImageSegmenter` instance is in image mode, for
|
|
performing image segmentation on single image inputs.
|
|
|
|
Args:
|
|
model_path: Path to the model.
|
|
|
|
Returns:
|
|
`ImageSegmenter` object that's created from the model file and the default
|
|
`ImageSegmenterOptions`.
|
|
|
|
Raises:
|
|
ValueError: If failed to create `ImageSegmenter` object from the provided
|
|
file such as invalid file path.
|
|
RuntimeError: If other types of error occurred.
|
|
"""
|
|
base_options = _BaseOptions(model_asset_path=model_path)
|
|
options = ImageSegmenterOptions(
|
|
base_options=base_options, running_mode=_RunningMode.IMAGE
|
|
)
|
|
return cls.create_from_options(options)
|
|
|
|
@classmethod
|
|
def create_from_options(
|
|
cls, options: ImageSegmenterOptions
|
|
) -> 'ImageSegmenter':
|
|
"""Creates the `ImageSegmenter` object from image segmenter options.
|
|
|
|
Args:
|
|
options: Options for the image segmenter task.
|
|
|
|
Returns:
|
|
`ImageSegmenter` object that's created from `options`.
|
|
|
|
Raises:
|
|
ValueError: If failed to create `ImageSegmenter` object from
|
|
`ImageSegmenterOptions` such as missing the model.
|
|
RuntimeError: If other types of error occurred.
|
|
"""
|
|
|
|
def packets_callback(output_packets: Mapping[str, packet.Packet]):
|
|
if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty():
|
|
return
|
|
segmentation_result = packet_getter.get_image_list(
|
|
output_packets[_SEGMENTATION_OUT_STREAM_NAME]
|
|
)
|
|
image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME])
|
|
timestamp = output_packets[_SEGMENTATION_OUT_STREAM_NAME].timestamp
|
|
options.result_callback(
|
|
segmentation_result,
|
|
image,
|
|
timestamp.value // _MICRO_SECONDS_PER_MILLISECOND,
|
|
)
|
|
|
|
task_info = _TaskInfo(
|
|
task_graph=_TASK_GRAPH_NAME,
|
|
input_streams=[
|
|
':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME]),
|
|
':'.join([_NORM_RECT_TAG, _NORM_RECT_STREAM_NAME]),
|
|
],
|
|
output_streams=[
|
|
':'.join([_SEGMENTATION_TAG, _SEGMENTATION_OUT_STREAM_NAME]),
|
|
':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]),
|
|
],
|
|
task_options=options,
|
|
)
|
|
return cls(
|
|
task_info.generate_graph_config(
|
|
enable_flow_limiting=options.running_mode
|
|
== _RunningMode.LIVE_STREAM
|
|
),
|
|
options.running_mode,
|
|
packets_callback if options.result_callback else None,
|
|
)
|
|
|
|
def get_labels(self):
|
|
""" Get the category label list of the ImageSegmenter can recognize.
|
|
|
|
For CATEGORY_MASK type, the index in the category mask corresponds to the
|
|
category in the label list.
|
|
For CONFIDENCE_MASK type, the output mask list at index corresponds to the
|
|
category in the label list.
|
|
|
|
If there is no label map provided in the model file, empty label list is
|
|
returned.
|
|
|
|
Returns:
|
|
If the output_type is CATEGORY_MASK, the returned vector of images is
|
|
per-category segmented image mask.
|
|
If the output_type is CONFIDENCE_MASK, the returned vector of images
|
|
contains only one confidence image mask. A segmentation result object that
|
|
contains a list of segmentation masks as images.
|
|
|
|
Raises:
|
|
ValueError: If any of the input arguments is invalid.
|
|
RuntimeError: If image segmentation failed to run.
|
|
"""
|
|
return self.labels
|
|
|
|
def segment(
|
|
self,
|
|
image: image_module.Image,
|
|
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
|
) -> ImageSegmenterResult:
|
|
"""Performs the actual segmentation task on the provided MediaPipe Image.
|
|
|
|
Args:
|
|
image: MediaPipe Image.
|
|
image_processing_options: Options for image processing.
|
|
|
|
Returns:
|
|
If the output_type is CATEGORY_MASK, the returned vector of images is
|
|
per-category segmented image mask.
|
|
If the output_type is CONFIDENCE_MASK, the returned vector of images
|
|
contains only one confidence image mask. A segmentation result object that
|
|
contains a list of segmentation masks as images.
|
|
|
|
Raises:
|
|
ValueError: If any of the input arguments is invalid.
|
|
RuntimeError: If image segmentation failed to run.
|
|
"""
|
|
normalized_rect = self.convert_to_normalized_rect(
|
|
image_processing_options, image, roi_allowed=False
|
|
)
|
|
output_packets = self._process_image_data({
|
|
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image),
|
|
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
|
normalized_rect.to_pb2()
|
|
),
|
|
})
|
|
segmentation_result = packet_getter.get_image_list(
|
|
output_packets[_SEGMENTATION_OUT_STREAM_NAME]
|
|
)
|
|
return segmentation_result
|
|
|
|
def segment_for_video(
|
|
self,
|
|
image: image_module.Image,
|
|
timestamp_ms: int,
|
|
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
|
) -> ImageSegmenterResult:
|
|
"""Performs segmentation on the provided video frames.
|
|
|
|
Only use this method when the ImageSegmenter is created with the video
|
|
running mode. It's required to provide the video frame's timestamp (in
|
|
milliseconds) along with the video frame. The input timestamps should be
|
|
monotonically increasing for adjacent calls of this method.
|
|
|
|
Args:
|
|
image: MediaPipe Image.
|
|
timestamp_ms: The timestamp of the input video frame in milliseconds.
|
|
image_processing_options: Options for image processing.
|
|
|
|
Returns:
|
|
If the output_type is CATEGORY_MASK, the returned vector of images is
|
|
per-category segmented image mask.
|
|
If the output_type is CONFIDENCE_MASK, the returned vector of images
|
|
contains only one confidence image mask. A segmentation result object that
|
|
contains a list of segmentation masks as images.
|
|
|
|
Raises:
|
|
ValueError: If any of the input arguments is invalid.
|
|
RuntimeError: If image segmentation failed to run.
|
|
"""
|
|
normalized_rect = self.convert_to_normalized_rect(
|
|
image_processing_options, image, roi_allowed=False
|
|
)
|
|
output_packets = self._process_video_data({
|
|
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND
|
|
),
|
|
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
|
normalized_rect.to_pb2()
|
|
).at(timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
|
})
|
|
segmentation_result = packet_getter.get_image_list(
|
|
output_packets[_SEGMENTATION_OUT_STREAM_NAME]
|
|
)
|
|
return segmentation_result
|
|
|
|
def segment_async(
|
|
self,
|
|
image: image_module.Image,
|
|
timestamp_ms: int,
|
|
image_processing_options: Optional[_ImageProcessingOptions] = None,
|
|
) -> None:
|
|
"""Sends live image data (an Image with a unique timestamp) to perform image segmentation.
|
|
|
|
Only use this method when the ImageSegmenter is created with the live stream
|
|
running mode. The input timestamps should be monotonically increasing for
|
|
adjacent calls of this method. This method will return immediately after the
|
|
input image is accepted. The results will be available via the
|
|
`result_callback` provided in the `ImageSegmenterOptions`. The
|
|
`segment_async` method is designed to process live stream data such as
|
|
camera input. To lower the overall latency, image segmenter may drop the
|
|
input images if needed. In other words, it's not guaranteed to have output
|
|
per input image.
|
|
|
|
The `result_callback` prvoides:
|
|
- A segmentation result object that contains a list of segmentation masks
|
|
as images.
|
|
- The input image that the image segmenter runs on.
|
|
- The input timestamp in milliseconds.
|
|
|
|
Args:
|
|
image: MediaPipe Image.
|
|
timestamp_ms: The timestamp of the input image in milliseconds.
|
|
image_processing_options: Options for image processing.
|
|
|
|
Raises:
|
|
ValueError: If the current input timestamp is smaller than what the image
|
|
segmenter has already processed.
|
|
"""
|
|
normalized_rect = self.convert_to_normalized_rect(
|
|
image_processing_options, image, roi_allowed=False
|
|
)
|
|
self._send_live_stream_data({
|
|
_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at(
|
|
timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND
|
|
),
|
|
_NORM_RECT_STREAM_NAME: packet_creator.create_proto(
|
|
normalized_rect.to_pb2()
|
|
).at(timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND),
|
|
})
|