mediapipe/mediapipe/tasks/python/text/text_classifier.py

147 lines
5.3 KiB
Python

# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MediaPipe text classifier task."""
import dataclasses
from mediapipe.python import packet_creator
from mediapipe.python import packet_getter
# TODO: Import MPImage directly one we have an alias
from mediapipe.tasks.cc.components.containers.proto import classifications_pb2
from mediapipe.tasks.cc.text.text_classifier.proto import text_classifier_graph_options_pb2
from mediapipe.tasks.python.components.containers import classifications
from mediapipe.tasks.python.components.processors import classifier_options
from mediapipe.tasks.python.core import base_options as base_options_module
from mediapipe.tasks.python.core import task_info as task_info_module
from mediapipe.tasks.python.core.optional_dependencies import doc_controls
from mediapipe.tasks.python.text.core import base_text_task_api
_BaseOptions = base_options_module.BaseOptions
_TextClassifierGraphOptionsProto = text_classifier_graph_options_pb2.TextClassifierGraphOptions
_ClassifierOptions = classifier_options.ClassifierOptions
_TaskInfo = task_info_module.TaskInfo
_CLASSIFICATION_RESULT_OUT_STREAM_NAME = 'classification_result_out'
_CLASSIFICATION_RESULT_TAG = 'CLASSIFICATION_RESULT'
_TEXT_IN_STREAM_NAME = 'text_in'
_TEXT_TAG = 'TEXT'
_TASK_GRAPH_NAME = 'mediapipe.tasks.text.text_classifier.TextClassifierGraph'
_MICRO_SECONDS_PER_MILLISECOND = 1000
@dataclasses.dataclass
class TextClassifierOptions:
"""Options for the text classifier task.
Attributes:
base_options: Base options for the text classifier task.
classifier_options: Options for the text classification task.
"""
base_options: _BaseOptions
classifier_options: _ClassifierOptions = _ClassifierOptions()
@doc_controls.do_not_generate_docs
def to_pb2(self) -> _TextClassifierGraphOptionsProto:
"""Generates an TextClassifierOptions protobuf object."""
base_options_proto = self.base_options.to_pb2()
classifier_options_proto = self.classifier_options.to_pb2()
return _TextClassifierGraphOptionsProto(
base_options=base_options_proto,
classifier_options=classifier_options_proto)
class TextClassifier(base_text_task_api.BaseTextTaskApi):
"""Class that performs classification on text."""
@classmethod
def create_from_model_path(cls, model_path: str) -> 'TextClassifier':
"""Creates an `TextClassifier` object from a TensorFlow Lite model and the default `TextClassifierOptions`.
Args:
model_path: Path to the model.
Returns:
`TextClassifier` object that's created from the model file and the
default `TextClassifierOptions`.
Raises:
ValueError: If failed to create `TextClassifier` object from the provided
file such as invalid file path.
RuntimeError: If other types of error occurred.
"""
base_options = _BaseOptions(model_asset_path=model_path)
options = TextClassifierOptions(base_options=base_options)
return cls.create_from_options(options)
@classmethod
def create_from_options(cls,
options: TextClassifierOptions) -> 'TextClassifier':
"""Creates the `TextClassifier` object from text classifier options.
Args:
options: Options for the text classifier task.
Returns:
`TextClassifier` object that's created from `options`.
Raises:
ValueError: If failed to create `TextClassifier` object from
`TextClassifierOptions` such as missing the model.
RuntimeError: If other types of error occurred.
"""
task_info = _TaskInfo(
task_graph=_TASK_GRAPH_NAME,
input_streams=[
':'.join([_TEXT_TAG, _TEXT_IN_STREAM_NAME])
],
output_streams=[
':'.join([
_CLASSIFICATION_RESULT_TAG,
_CLASSIFICATION_RESULT_OUT_STREAM_NAME
])
],
task_options=options)
return cls(task_info.generate_graph_config())
def classify(
self,
text: str,
) -> classifications.ClassificationResult:
"""Performs classification on the input `text`.
Args:
text: The input text.
Returns:
A classification result object that contains a list of classifications.
Raises:
ValueError: If any of the input arguments is invalid.
RuntimeError: If text classification failed to run.
"""
output_packets = self._runner.process({
_TEXT_IN_STREAM_NAME: packet_creator.create_string(text)
})
classification_result_proto = classifications_pb2.ClassificationResult()
classification_result_proto.CopyFrom(
packet_getter.get_proto(
output_packets[_CLASSIFICATION_RESULT_OUT_STREAM_NAME]))
return classifications.ClassificationResult([
classifications.Classifications.create_from_pb2(classification)
for classification in classification_result_proto.classifications
])