mediapipe/mediapipe/tasks/python/test/vision/image_classifier_test.py

127 lines
4.6 KiB
Python

# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for image classifier."""
import enum
from absl.testing import absltest
from absl.testing import parameterized
from mediapipe.python._framework_bindings import image as image_module
from mediapipe.tasks.python.components.processors.proto import classifier_options
from mediapipe.tasks.python.components.containers.proto import category as category_module
from mediapipe.tasks.python.components.containers.proto import classifications as classifications_module
from mediapipe.tasks.python.core import base_options as base_options_module
from mediapipe.tasks.python.test import test_utils
from mediapipe.tasks.python.vision import image_classifier
from mediapipe.tasks.python.vision.core import vision_task_running_mode as running_mode_module
_BaseOptions = base_options_module.BaseOptions
_ClassifierOptions = classifier_options.ClassifierOptions
_Category = category_module.Category
_ClassificationEntry = classifications_module.ClassificationEntry
_Classifications = classifications_module.Classifications
_ClassificationResult = classifications_module.ClassificationResult
_Image = image_module.Image
_ImageClassifier = image_classifier.ImageClassifier
_ImageClassifierOptions = image_classifier.ImageClassifierOptions
_RUNNING_MODE = running_mode_module.VisionTaskRunningMode
_MODEL_FILE = 'mobilenet_v2_1.0_224.tflite'
_IMAGE_FILE = 'burger.jpg'
_EXPECTED_CLASSIFICATION_RESULT = _ClassificationResult(
classifications=[
_Classifications(
entries=[
_ClassificationEntry(
categories=[
_Category(
index=934,
score=0.7939587831497192,
display_name='',
category_name='cheeseburger'),
_Category(
index=932,
score=0.02739289402961731,
display_name='',
category_name='bagel'),
_Category(
index=925,
score=0.01934075355529785,
display_name='',
category_name='guacamole'),
_Category(
index=963,
score=0.006327860057353973,
display_name='',
category_name='meat loaf')
],
timestamp_ms=0
)
],
head_index=0,
head_name='probability')
])
_ALLOW_LIST = ['cheeseburger', 'guacamole']
_DENY_LIST = ['cheeseburger']
_SCORE_THRESHOLD = 0.5
_MAX_RESULTS = 3
class ModelFileType(enum.Enum):
FILE_CONTENT = 1
FILE_NAME = 2
class ImageClassifierTest(parameterized.TestCase):
def setUp(self):
super().setUp()
self.test_image = _Image.create_from_file(
test_utils.get_test_data_path(_IMAGE_FILE))
self.model_path = test_utils.get_test_data_path(_MODEL_FILE)
@parameterized.parameters(
(ModelFileType.FILE_NAME, 4, _EXPECTED_CLASSIFICATION_RESULT),
(ModelFileType.FILE_CONTENT, 4, _EXPECTED_CLASSIFICATION_RESULT))
def test_classify(self, model_file_type, max_results,
expected_classification_result):
# Creates classifier.
if model_file_type is ModelFileType.FILE_NAME:
base_options = _BaseOptions(model_asset_path=self.model_path)
elif model_file_type is ModelFileType.FILE_CONTENT:
with open(self.model_path, 'rb') as f:
model_content = f.read()
base_options = _BaseOptions(model_asset_buffer=model_content)
else:
# Should never happen
raise ValueError('model_file_type is invalid.')
classifier_options = _ClassifierOptions(max_results=max_results)
options = _ImageClassifierOptions(
base_options=base_options, classifier_options=classifier_options)
classifier = _ImageClassifier.create_from_options(options)
# Performs image classification on the input.
image_result = classifier.classify(self.test_image)
# Comparing results.
self.assertEqual(image_result, expected_classification_result)
# Closes the classifier explicitly when the classifier is not used in
# a context.
classifier.close()
if __name__ == '__main__':
absltest.main()