215 lines
7.5 KiB
TypeScript
215 lines
7.5 KiB
TypeScript
/**
|
|
* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
import 'jasmine';
|
|
|
|
// Placeholder for internal dependency on encodeByteArray
|
|
import {CalculatorGraphConfig} from '../../../../framework/calculator_pb';
|
|
import {addJasmineCustomFloatEqualityTester, createSpyWasmModule, MediapipeTasksFake, SpyWasmModule, verifyGraph, verifyListenersRegistered} from '../../../../tasks/web/core/task_runner_test_utils';
|
|
import {RenderData as RenderDataProto} from '../../../../util/render_data_pb';
|
|
import {WasmImage} from '../../../../web/graph_runner/graph_runner_image_lib';
|
|
|
|
import {InteractiveSegmenter, RegionOfInterest} from './interactive_segmenter';
|
|
|
|
|
|
const ROI: RegionOfInterest = {
|
|
keypoint: {x: 0.1, y: 0.2}
|
|
};
|
|
|
|
class InteractiveSegmenterFake extends InteractiveSegmenter implements
|
|
MediapipeTasksFake {
|
|
calculatorName =
|
|
'mediapipe.tasks.vision.interactive_segmenter.InteractiveSegmenterGraph';
|
|
attachListenerSpies: jasmine.Spy[] = [];
|
|
graph: CalculatorGraphConfig|undefined;
|
|
|
|
fakeWasmModule: SpyWasmModule;
|
|
imageVectorListener:
|
|
((images: WasmImage[], timestamp: number) => void)|undefined;
|
|
lastRoi?: RenderDataProto;
|
|
|
|
constructor() {
|
|
super(createSpyWasmModule(), /* glCanvas= */ null);
|
|
this.fakeWasmModule =
|
|
this.graphRunner.wasmModule as unknown as SpyWasmModule;
|
|
|
|
this.attachListenerSpies[0] =
|
|
spyOn(this.graphRunner, 'attachImageVectorListener')
|
|
.and.callFake((stream, listener) => {
|
|
expect(stream).toEqual('image_out');
|
|
this.imageVectorListener = listener;
|
|
});
|
|
spyOn(this.graphRunner, 'setGraph').and.callFake(binaryGraph => {
|
|
this.graph = CalculatorGraphConfig.deserializeBinary(binaryGraph);
|
|
});
|
|
spyOn(this.graphRunner, 'addGpuBufferAsImageToStream');
|
|
|
|
spyOn(this.graphRunner, 'addProtoToStream')
|
|
.and.callFake((data, protoName, stream) => {
|
|
if (stream === 'roi_in') {
|
|
expect(protoName).toEqual('mediapipe.RenderData');
|
|
this.lastRoi = RenderDataProto.deserializeBinary(data);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
describe('InteractiveSegmenter', () => {
|
|
let interactiveSegmenter: InteractiveSegmenterFake;
|
|
|
|
beforeEach(async () => {
|
|
addJasmineCustomFloatEqualityTester();
|
|
interactiveSegmenter = new InteractiveSegmenterFake();
|
|
await interactiveSegmenter.setOptions(
|
|
{baseOptions: {modelAssetBuffer: new Uint8Array([])}});
|
|
});
|
|
|
|
it('initializes graph', async () => {
|
|
verifyGraph(interactiveSegmenter);
|
|
verifyListenersRegistered(interactiveSegmenter);
|
|
});
|
|
|
|
it('reloads graph when settings are changed', async () => {
|
|
await interactiveSegmenter.setOptions({outputType: 'CATEGORY_MASK'});
|
|
verifyGraph(interactiveSegmenter, [['segmenterOptions', 'outputType'], 1]);
|
|
verifyListenersRegistered(interactiveSegmenter);
|
|
|
|
await interactiveSegmenter.setOptions({outputType: 'CONFIDENCE_MASK'});
|
|
verifyGraph(interactiveSegmenter, [['segmenterOptions', 'outputType'], 2]);
|
|
verifyListenersRegistered(interactiveSegmenter);
|
|
});
|
|
|
|
it('can use custom models', async () => {
|
|
const newModel = new Uint8Array([0, 1, 2, 3, 4]);
|
|
const newModelBase64 = Buffer.from(newModel).toString('base64');
|
|
await interactiveSegmenter.setOptions({
|
|
baseOptions: {
|
|
modelAssetBuffer: newModel,
|
|
}
|
|
});
|
|
|
|
verifyGraph(
|
|
interactiveSegmenter,
|
|
/* expectedCalculatorOptions= */ undefined,
|
|
/* expectedBaseOptions= */
|
|
[
|
|
'modelAsset', {
|
|
fileContent: newModelBase64,
|
|
fileName: undefined,
|
|
fileDescriptorMeta: undefined,
|
|
filePointerMeta: undefined
|
|
}
|
|
]);
|
|
});
|
|
|
|
|
|
describe('setOptions()', () => {
|
|
const fieldPath = ['segmenterOptions', 'outputType'];
|
|
|
|
it(`can set outputType`, async () => {
|
|
await interactiveSegmenter.setOptions({outputType: 'CONFIDENCE_MASK'});
|
|
verifyGraph(interactiveSegmenter, [fieldPath, 2]);
|
|
});
|
|
|
|
it(`can clear outputType`, async () => {
|
|
await interactiveSegmenter.setOptions({outputType: 'CONFIDENCE_MASK'});
|
|
verifyGraph(interactiveSegmenter, [fieldPath, 2]);
|
|
await interactiveSegmenter.setOptions({outputType: undefined});
|
|
verifyGraph(interactiveSegmenter, [fieldPath, 1]);
|
|
});
|
|
});
|
|
|
|
it('doesn\'t support region of interest', () => {
|
|
expect(() => {
|
|
interactiveSegmenter.segment(
|
|
{} as HTMLImageElement, ROI,
|
|
{regionOfInterest: {left: 0, right: 0, top: 0, bottom: 0}}, () => {});
|
|
}).toThrowError('This task doesn\'t support region-of-interest.');
|
|
});
|
|
|
|
it('sends region-of-interest', (done) => {
|
|
interactiveSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
|
|
expect(interactiveSegmenter.lastRoi).toBeDefined();
|
|
expect(interactiveSegmenter.lastRoi!.toObject().renderAnnotationsList![0])
|
|
.toEqual(jasmine.objectContaining({
|
|
color: {r: 255, b: undefined, g: undefined},
|
|
}));
|
|
done();
|
|
});
|
|
|
|
interactiveSegmenter.segment({} as HTMLImageElement, ROI, () => {});
|
|
});
|
|
|
|
it('supports category masks', (done) => {
|
|
const mask = new Uint8Array([1, 2, 3, 4]);
|
|
|
|
// Pass the test data to our listener
|
|
interactiveSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
|
|
verifyListenersRegistered(interactiveSegmenter);
|
|
interactiveSegmenter.imageVectorListener!(
|
|
[
|
|
{data: mask, width: 2, height: 2},
|
|
],
|
|
/* timestamp= */ 1337);
|
|
});
|
|
|
|
// Invoke the image segmenter
|
|
interactiveSegmenter.segment(
|
|
{} as HTMLImageElement, ROI, (masks, width, height) => {
|
|
expect(interactiveSegmenter.fakeWasmModule._waitUntilIdle)
|
|
.toHaveBeenCalled();
|
|
expect(masks).toHaveSize(1);
|
|
expect(masks[0]).toEqual(mask);
|
|
expect(width).toEqual(2);
|
|
expect(height).toEqual(2);
|
|
done();
|
|
});
|
|
});
|
|
|
|
it('supports confidence masks', async () => {
|
|
const mask1 = new Float32Array([0.1, 0.2, 0.3, 0.4]);
|
|
const mask2 = new Float32Array([0.5, 0.6, 0.7, 0.8]);
|
|
|
|
await interactiveSegmenter.setOptions({outputType: 'CONFIDENCE_MASK'});
|
|
|
|
// Pass the test data to our listener
|
|
interactiveSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
|
|
verifyListenersRegistered(interactiveSegmenter);
|
|
interactiveSegmenter.imageVectorListener!(
|
|
[
|
|
{data: mask1, width: 2, height: 2},
|
|
{data: mask2, width: 2, height: 2},
|
|
],
|
|
1337);
|
|
});
|
|
|
|
return new Promise<void>(resolve => {
|
|
// Invoke the image segmenter
|
|
interactiveSegmenter.segment(
|
|
{} as HTMLImageElement, ROI, (masks, width, height) => {
|
|
expect(interactiveSegmenter.fakeWasmModule._waitUntilIdle)
|
|
.toHaveBeenCalled();
|
|
expect(masks).toHaveSize(2);
|
|
expect(masks[0]).toEqual(mask1);
|
|
expect(masks[1]).toEqual(mask2);
|
|
expect(width).toEqual(2);
|
|
expect(height).toEqual(2);
|
|
resolve();
|
|
});
|
|
});
|
|
});
|
|
});
|