mediapipe/mediapipe/tasks/web/vision/interactive_segmenter/interactive_segmenter.ts
Sebastian Schmidt ec3cd45d61 Add InteractiveSegmenter Web API
PiperOrigin-RevId: 516654090
2023-03-14 15:48:38 -07:00

307 lines
13 KiB
TypeScript

/**
* Copyright 2023 The MediaPipe Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import {CalculatorGraphConfig} from '../../../../framework/calculator_pb';
import {CalculatorOptions} from '../../../../framework/calculator_options_pb';
import {BaseOptions as BaseOptionsProto} from '../../../../tasks/cc/core/proto/base_options_pb';
import {ImageSegmenterGraphOptions as ImageSegmenterGraphOptionsProto} from '../../../../tasks/cc/vision/image_segmenter/proto/image_segmenter_graph_options_pb';
import {SegmenterOptions as SegmenterOptionsProto} from '../../../../tasks/cc/vision/image_segmenter/proto/segmenter_options_pb';
import {WasmFileset} from '../../../../tasks/web/core/wasm_fileset';
import {ImageProcessingOptions} from '../../../../tasks/web/vision/core/image_processing_options';
import {RegionOfInterest, SegmentationMask, SegmentationMaskCallback} from '../../../../tasks/web/vision/core/types';
import {VisionGraphRunner, VisionTaskRunner} from '../../../../tasks/web/vision/core/vision_task_runner';
import {Color as ColorProto} from '../../../../util/color_pb';
import {RenderAnnotation as RenderAnnotationProto, RenderData as RenderDataProto} from '../../../../util/render_data_pb';
import {ImageSource, WasmModule} from '../../../../web/graph_runner/graph_runner';
// Placeholder for internal dependency on trusted resource url
import {InteractiveSegmenterOptions} from './interactive_segmenter_options';
export * from './interactive_segmenter_options';
export {SegmentationMask, SegmentationMaskCallback, RegionOfInterest};
export {ImageSource};
const IMAGE_IN_STREAM = 'image_in';
const NORM_RECT_IN_STREAM = 'norm_rect_in';
const ROI_IN_STREAM = 'roi_in';
const IMAGE_OUT_STREAM = 'image_out';
const IMAGEA_SEGMENTER_GRAPH =
'mediapipe.tasks.vision.interactive_segmenter.InteractiveSegmenterGraph';
// The OSS JS API does not support the builder pattern.
// tslint:disable:jspb-use-builder-pattern
/**
* Performs interactive segmentation on images.
*
* Users can represent user interaction through `RegionOfInterest`, which gives
* a hint to InteractiveSegmenter to perform segmentation focusing on the given
* region of interest.
*
* The API expects a TFLite model with mandatory TFLite Model Metadata.
*
* Input tensor:
* (kTfLiteUInt8/kTfLiteFloat32)
* - image input of size `[batch x height x width x channels]`.
* - batch inference is not supported (`batch` is required to be 1).
* - RGB inputs is supported (`channels` is required to be 3).
* - if type is kTfLiteFloat32, NormalizationOptions are required to be
* attached to the metadata for input normalization.
* Output tensors:
* (kTfLiteUInt8/kTfLiteFloat32)
* - list of segmented masks.
* - if `output_type` is CATEGORY_MASK, uint8 Image, Image vector of size 1.
* - if `output_type` is CONFIDENCE_MASK, float32 Image list of size
* `channels`.
* - batch is always 1
*/
export class InteractiveSegmenter extends VisionTaskRunner {
private userCallback: SegmentationMaskCallback = () => {};
private readonly options: ImageSegmenterGraphOptionsProto;
private readonly segmenterOptions: SegmenterOptionsProto;
/**
* Initializes the Wasm runtime and creates a new interactive segmenter from
* the provided options.
* @param wasmFileset A configuration object that provides the location of
* the Wasm binary and its loader.
* @param interactiveSegmenterOptions The options for the Interactive
* Segmenter. Note that either a path to the model asset or a model buffer
* needs to be provided (via `baseOptions`).
* @return A new `InteractiveSegmenter`.
*/
static createFromOptions(
wasmFileset: WasmFileset,
interactiveSegmenterOptions: InteractiveSegmenterOptions):
Promise<InteractiveSegmenter> {
return VisionTaskRunner.createInstance(
InteractiveSegmenter, /* initializeCanvas= */ true, wasmFileset,
interactiveSegmenterOptions);
}
/**
* Initializes the Wasm runtime and creates a new interactive segmenter based
* on the provided model asset buffer.
* @param wasmFileset A configuration object that provides the location of
* the Wasm binary and its loader.
* @param modelAssetBuffer A binary representation of the model.
* @return A new `InteractiveSegmenter`.
*/
static createFromModelBuffer(
wasmFileset: WasmFileset,
modelAssetBuffer: Uint8Array): Promise<InteractiveSegmenter> {
return VisionTaskRunner.createInstance(
InteractiveSegmenter, /* initializeCanvas= */ true, wasmFileset,
{baseOptions: {modelAssetBuffer}});
}
/**
* Initializes the Wasm runtime and creates a new interactive segmenter based
* on the path to the model asset.
* @param wasmFileset A configuration object that provides the location of
* the Wasm binary and its loader.
* @param modelAssetPath The path to the model asset.
* @return A new `InteractiveSegmenter`.
*/
static createFromModelPath(
wasmFileset: WasmFileset,
modelAssetPath: string): Promise<InteractiveSegmenter> {
return VisionTaskRunner.createInstance(
InteractiveSegmenter, /* initializeCanvas= */ true, wasmFileset,
{baseOptions: {modelAssetPath}});
}
/** @hideconstructor */
constructor(
wasmModule: WasmModule,
glCanvas?: HTMLCanvasElement|OffscreenCanvas|null) {
super(
new VisionGraphRunner(wasmModule, glCanvas), IMAGE_IN_STREAM,
NORM_RECT_IN_STREAM, /* roiAllowed= */ false);
this.options = new ImageSegmenterGraphOptionsProto();
this.segmenterOptions = new SegmenterOptionsProto();
this.options.setSegmenterOptions(this.segmenterOptions);
this.options.setBaseOptions(new BaseOptionsProto());
}
protected override get baseOptions(): BaseOptionsProto {
return this.options.getBaseOptions()!;
}
protected override set baseOptions(proto: BaseOptionsProto) {
this.options.setBaseOptions(proto);
}
/**
* Sets new options for the interactive segmenter.
*
* Calling `setOptions()` with a subset of options only affects those
* options. You can reset an option back to its default value by
* explicitly setting it to `undefined`.
*
* @param options The options for the interactive segmenter.
* @return A Promise that resolves when the settings have been applied.
*/
override setOptions(options: InteractiveSegmenterOptions): Promise<void> {
if (options.outputType === 'CONFIDENCE_MASK') {
this.segmenterOptions.setOutputType(
SegmenterOptionsProto.OutputType.CONFIDENCE_MASK);
} else {
this.segmenterOptions.setOutputType(
SegmenterOptionsProto.OutputType.CATEGORY_MASK);
}
return super.applyOptions(options);
}
/**
* Performs interactive segmentation on the provided single image and invokes
* the callback with the response. The `roi` parameter is used to represent a
* user's region of interest for segmentation.
*
* If the output_type is `CATEGORY_MASK`, the callback is invoked with vector
* of images that represent per-category segmented image mask. If the
* output_type is `CONFIDENCE_MASK`, the callback is invoked with a vector of
* images that contains only one confidence image mask. The method returns
* synchronously once the callback returns.
*
* @param image An image to process.
* @param roi The region of interest for segmentation.
* @param callback The callback that is invoked with the segmented masks. The
* lifetime of the returned data is only guaranteed for the duration of the
* callback.
*/
segment(
image: ImageSource, roi: RegionOfInterest,
callback: SegmentationMaskCallback): void;
/**
* Performs interactive segmentation on the provided single image and invokes
* the callback with the response. The `roi` parameter is used to represent a
* user's region of interest for segmentation.
*
* The 'image_processing_options' parameter can be used to specify the
* rotation to apply to the image before performing segmentation, by setting
* its 'rotationDegrees' field. Note that specifying a region-of-interest
* using the 'regionOfInterest' field is NOT supported and will result in an
* error.
*
* If the output_type is `CATEGORY_MASK`, the callback is invoked with vector
* of images that represent per-category segmented image mask. If the
* output_type is `CONFIDENCE_MASK`, the callback is invoked with a vector of
* images that contains only one confidence image mask. The method returns
* synchronously once the callback returns.
*
* @param image An image to process.
* @param roi The region of interest for segmentation.
* @param imageProcessingOptions the `ImageProcessingOptions` specifying how
* to process the input image before running inference.
* @param callback The callback that is invoked with the segmented masks. The
* lifetime of the returned data is only guaranteed for the duration of the
* callback.
*/
segment(
image: ImageSource, roi: RegionOfInterest,
imageProcessingOptions: ImageProcessingOptions,
callback: SegmentationMaskCallback): void;
segment(
image: ImageSource, roi: RegionOfInterest,
imageProcessingOptionsOrCallback: ImageProcessingOptions|
SegmentationMaskCallback,
callback?: SegmentationMaskCallback): void {
const imageProcessingOptions =
typeof imageProcessingOptionsOrCallback !== 'function' ?
imageProcessingOptionsOrCallback :
{};
this.userCallback = typeof imageProcessingOptionsOrCallback === 'function' ?
imageProcessingOptionsOrCallback :
callback!;
this.processRenderData(roi, this.getSynctheticTimestamp());
this.processImageData(image, imageProcessingOptions);
this.userCallback = () => {};
}
/** Updates the MediaPipe graph configuration. */
protected override refreshGraph(): void {
const graphConfig = new CalculatorGraphConfig();
graphConfig.addInputStream(IMAGE_IN_STREAM);
graphConfig.addInputStream(ROI_IN_STREAM);
graphConfig.addInputStream(NORM_RECT_IN_STREAM);
graphConfig.addOutputStream(IMAGE_OUT_STREAM);
const calculatorOptions = new CalculatorOptions();
calculatorOptions.setExtension(
ImageSegmenterGraphOptionsProto.ext, this.options);
const segmenterNode = new CalculatorGraphConfig.Node();
segmenterNode.setCalculator(IMAGEA_SEGMENTER_GRAPH);
segmenterNode.addInputStream('IMAGE:' + IMAGE_IN_STREAM);
segmenterNode.addInputStream('ROI:' + ROI_IN_STREAM);
segmenterNode.addInputStream('NORM_RECT:' + NORM_RECT_IN_STREAM);
segmenterNode.addOutputStream('GROUPED_SEGMENTATION:' + IMAGE_OUT_STREAM);
segmenterNode.setOptions(calculatorOptions);
graphConfig.addNode(segmenterNode);
this.graphRunner.attachImageVectorListener(
IMAGE_OUT_STREAM, (masks, timestamp) => {
if (masks.length === 0) {
this.userCallback([], 0, 0);
} else {
this.userCallback(
masks.map(m => m.data), masks[0].width, masks[0].height);
}
this.setLatestOutputTimestamp(timestamp);
});
this.graphRunner.attachEmptyPacketListener(IMAGE_OUT_STREAM, timestamp => {
this.setLatestOutputTimestamp(timestamp);
});
const binaryGraph = graphConfig.serializeBinary();
this.setGraph(new Uint8Array(binaryGraph), /* isBinary= */ true);
}
/**
* Converts the user-facing RegionOfInterest message to the RenderData proto
* and sends it to the graph
*/
private processRenderData(roi: RegionOfInterest, timestamp: number): void {
const renderData = new RenderDataProto();
const renderAnnotation = new RenderAnnotationProto();
const color = new ColorProto();
color.setR(255);
renderAnnotation.setColor(color);
const point = new RenderAnnotationProto.Point();
point.setNormalized(true);
point.setX(roi.keypoint.x);
point.setY(roi.keypoint.y);
renderAnnotation.setPoint(point);
renderData.addRenderAnnotations(renderAnnotation);
this.graphRunner.addProtoToStream(
renderData.serializeBinary(), 'mediapipe.RenderData', ROI_IN_STREAM,
timestamp);
}
}