380 lines
18 KiB
Python
380 lines
18 KiB
Python
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tests for audio classifier."""
|
|
|
|
import os
|
|
from typing import List, Tuple
|
|
from unittest import mock
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
import numpy as np
|
|
from scipy.io import wavfile
|
|
|
|
from mediapipe.tasks.python.audio import audio_classifier
|
|
from mediapipe.tasks.python.audio.core import audio_task_running_mode
|
|
from mediapipe.tasks.python.components.containers import audio_data as audio_data_module
|
|
from mediapipe.tasks.python.components.containers import classification_result as classification_result_module
|
|
from mediapipe.tasks.python.components.processors import classifier_options
|
|
from mediapipe.tasks.python.core import base_options as base_options_module
|
|
from mediapipe.tasks.python.test import test_utils
|
|
|
|
_AudioClassifier = audio_classifier.AudioClassifier
|
|
_AudioClassifierOptions = audio_classifier.AudioClassifierOptions
|
|
_AudioClassifierResult = classification_result_module.ClassificationResult
|
|
_AudioData = audio_data_module.AudioData
|
|
_BaseOptions = base_options_module.BaseOptions
|
|
_ClassifierOptions = classifier_options.ClassifierOptions
|
|
_RUNNING_MODE = audio_task_running_mode.AudioTaskRunningMode
|
|
|
|
_YAMNET_MODEL_FILE = 'yamnet_audio_classifier_with_metadata.tflite'
|
|
_YAMNET_MODEL_SAMPLE_RATE = 16000
|
|
_TWO_HEADS_MODEL_FILE = 'two_heads.tflite'
|
|
_SPEECH_WAV_16K_MONO = 'speech_16000_hz_mono.wav'
|
|
_SPEECH_WAV_48K_MONO = 'speech_48000_hz_mono.wav'
|
|
_TEST_DATA_DIR = 'mediapipe/tasks/testdata/audio'
|
|
_TWO_HEADS_WAV_16K_MONO = 'two_heads_16000_hz_mono.wav'
|
|
_TWO_HEADS_WAV_44K_MONO = 'two_heads_44100_hz_mono.wav'
|
|
_YAMNET_NUM_OF_SAMPLES = 15600
|
|
_MILLSECONDS_PER_SECOND = 1000
|
|
|
|
|
|
class AudioClassifierTest(parameterized.TestCase):
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.yamnet_model_path = test_utils.get_test_data_path(
|
|
os.path.join(_TEST_DATA_DIR, _YAMNET_MODEL_FILE))
|
|
self.two_heads_model_path = test_utils.get_test_data_path(
|
|
os.path.join(_TEST_DATA_DIR, _TWO_HEADS_MODEL_FILE))
|
|
|
|
def _read_wav_file(self, file_name) -> _AudioData:
|
|
sample_rate, buffer = wavfile.read(
|
|
test_utils.get_test_data_path(os.path.join(_TEST_DATA_DIR, file_name)))
|
|
return _AudioData.create_from_array(
|
|
buffer.astype(float) / np.iinfo(np.int16).max, sample_rate)
|
|
|
|
def _read_wav_file_as_stream(self, file_name) -> List[Tuple[_AudioData, int]]:
|
|
sample_rate, buffer = wavfile.read(
|
|
test_utils.get_test_data_path(os.path.join(_TEST_DATA_DIR, file_name)))
|
|
audio_data_list = []
|
|
start = 0
|
|
step_size = _YAMNET_NUM_OF_SAMPLES * sample_rate / _YAMNET_MODEL_SAMPLE_RATE
|
|
while start < len(buffer):
|
|
end = min(start + (int)(step_size), len(buffer))
|
|
audio_data_list.append((_AudioData.create_from_array(
|
|
buffer[start:end].astype(float) / np.iinfo(np.int16).max,
|
|
sample_rate), (int)(start / sample_rate * _MILLSECONDS_PER_SECOND)))
|
|
start = end
|
|
return audio_data_list
|
|
|
|
# TODO: Compares the exact score values to capture unexpected
|
|
# changes in the inference pipeline.
|
|
def _check_yamnet_result(
|
|
self,
|
|
classification_result_list: List[_AudioClassifierResult],
|
|
expected_num_categories=521):
|
|
self.assertLen(classification_result_list, 5)
|
|
for idx, timestamp in enumerate([0, 975, 1950, 2925]):
|
|
classification_result = classification_result_list[idx]
|
|
self.assertEqual(classification_result.timestamp_ms, timestamp)
|
|
self.assertLen(classification_result.classifications, 1)
|
|
classifcation = classification_result.classifications[0]
|
|
self.assertEqual(classifcation.head_index, 0)
|
|
self.assertEqual(classifcation.head_name, 'scores')
|
|
self.assertLen(classifcation.categories, expected_num_categories)
|
|
audio_category = classifcation.categories[0]
|
|
self.assertEqual(audio_category.index, 0)
|
|
self.assertEqual(audio_category.category_name, 'Speech')
|
|
self.assertGreater(audio_category.score, 0.9)
|
|
|
|
# TODO: Compares the exact score values to capture unexpected
|
|
# changes in the inference pipeline.
|
|
def _check_two_heads_result(
|
|
self,
|
|
classification_result_list: List[_AudioClassifierResult],
|
|
first_head_expected_num_categories=521,
|
|
second_head_expected_num_categories=5):
|
|
self.assertGreaterEqual(len(classification_result_list), 1)
|
|
self.assertLessEqual(len(classification_result_list), 2)
|
|
# Checks the first result.
|
|
classification_result = classification_result_list[0]
|
|
self.assertEqual(classification_result.timestamp_ms, 0)
|
|
self.assertLen(classification_result.classifications, 2)
|
|
# Checks the first head.
|
|
yamnet_classifcation = classification_result.classifications[0]
|
|
self.assertEqual(yamnet_classifcation.head_index, 0)
|
|
self.assertEqual(yamnet_classifcation.head_name, 'yamnet_classification')
|
|
self.assertLen(yamnet_classifcation.categories,
|
|
first_head_expected_num_categories)
|
|
# Checks the second head.
|
|
yamnet_category = yamnet_classifcation.categories[0]
|
|
self.assertEqual(yamnet_category.index, 508)
|
|
self.assertEqual(yamnet_category.category_name, 'Environmental noise')
|
|
self.assertGreater(yamnet_category.score, 0.5)
|
|
bird_classifcation = classification_result.classifications[1]
|
|
self.assertEqual(bird_classifcation.head_index, 1)
|
|
self.assertEqual(bird_classifcation.head_name, 'bird_classification')
|
|
self.assertLen(bird_classifcation.categories,
|
|
second_head_expected_num_categories)
|
|
bird_category = bird_classifcation.categories[0]
|
|
self.assertEqual(bird_category.index, 4)
|
|
self.assertEqual(bird_category.category_name, 'Chestnut-crowned Antpitta')
|
|
self.assertGreater(bird_category.score, 0.93)
|
|
# Checks the second result, if present.
|
|
if len(classification_result_list) == 2:
|
|
classification_result = classification_result_list[1]
|
|
self.assertEqual(classification_result.timestamp_ms, 975)
|
|
self.assertLen(classification_result.classifications, 2)
|
|
# Checks the first head.
|
|
yamnet_classifcation = classification_result.classifications[0]
|
|
self.assertEqual(yamnet_classifcation.head_index, 0)
|
|
self.assertEqual(yamnet_classifcation.head_name, 'yamnet_classification')
|
|
self.assertLen(yamnet_classifcation.categories,
|
|
first_head_expected_num_categories)
|
|
yamnet_category = yamnet_classifcation.categories[0]
|
|
self.assertEqual(yamnet_category.index, 494)
|
|
self.assertEqual(yamnet_category.category_name, 'Silence')
|
|
self.assertGreater(yamnet_category.score, 0.9)
|
|
bird_classifcation = classification_result.classifications[1]
|
|
self.assertEqual(bird_classifcation.head_index, 1)
|
|
self.assertEqual(bird_classifcation.head_name, 'bird_classification')
|
|
self.assertLen(bird_classifcation.categories,
|
|
second_head_expected_num_categories)
|
|
# Checks the second head.
|
|
bird_category = bird_classifcation.categories[0]
|
|
self.assertEqual(bird_category.index, 1)
|
|
self.assertEqual(bird_category.category_name, 'White-breasted Wood-Wren')
|
|
self.assertGreater(bird_category.score, 0.99)
|
|
|
|
def test_create_from_file_succeeds_with_valid_model_path(self):
|
|
# Creates with default option and valid model file successfully.
|
|
with _AudioClassifier.create_from_model_path(
|
|
self.yamnet_model_path) as classifier:
|
|
self.assertIsInstance(classifier, _AudioClassifier)
|
|
|
|
def test_create_from_options_succeeds_with_valid_model_path(self):
|
|
# Creates with options containing model file successfully.
|
|
with _AudioClassifier.create_from_options(
|
|
_AudioClassifierOptions(
|
|
base_options=_BaseOptions(
|
|
model_asset_path=self.yamnet_model_path))) as classifier:
|
|
self.assertIsInstance(classifier, _AudioClassifier)
|
|
|
|
def test_create_from_options_fails_with_invalid_model_path(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'):
|
|
base_options = _BaseOptions(
|
|
model_asset_path='/path/to/invalid/model.tflite')
|
|
options = _AudioClassifierOptions(base_options=base_options)
|
|
_AudioClassifier.create_from_options(options)
|
|
|
|
def test_create_from_options_succeeds_with_valid_model_content(self):
|
|
# Creates with options containing model content successfully.
|
|
with open(self.yamnet_model_path, 'rb') as f:
|
|
base_options = _BaseOptions(model_asset_buffer=f.read())
|
|
options = _AudioClassifierOptions(base_options=base_options)
|
|
classifier = _AudioClassifier.create_from_options(options)
|
|
self.assertIsInstance(classifier, _AudioClassifier)
|
|
|
|
@parameterized.parameters((_SPEECH_WAV_16K_MONO), (_SPEECH_WAV_48K_MONO))
|
|
def test_classify_with_yamnet_model(self, audio_file):
|
|
with _AudioClassifier.create_from_model_path(
|
|
self.yamnet_model_path) as classifier:
|
|
classification_result_list = classifier.classify(
|
|
self._read_wav_file(audio_file))
|
|
self._check_yamnet_result(classification_result_list)
|
|
|
|
def test_classify_with_yamnet_model_and_inputs_at_different_sample_rates(
|
|
self):
|
|
with _AudioClassifier.create_from_model_path(
|
|
self.yamnet_model_path) as classifier:
|
|
for audio_file in [_SPEECH_WAV_16K_MONO, _SPEECH_WAV_48K_MONO]:
|
|
classification_result_list = classifier.classify(
|
|
self._read_wav_file(audio_file))
|
|
self._check_yamnet_result(classification_result_list)
|
|
|
|
def test_max_result_options(self):
|
|
with _AudioClassifier.create_from_options(
|
|
_AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
classifier_options=_ClassifierOptions(
|
|
max_results=1))) as classifier:
|
|
for audio_file in [_SPEECH_WAV_16K_MONO, _SPEECH_WAV_16K_MONO]:
|
|
classification_result_list = classifier.classify(
|
|
self._read_wav_file(audio_file))
|
|
self._check_yamnet_result(
|
|
classification_result_list, expected_num_categories=1)
|
|
|
|
def test_score_threshold_options(self):
|
|
with _AudioClassifier.create_from_options(
|
|
_AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
classifier_options=_ClassifierOptions(
|
|
score_threshold=0.9))) as classifier:
|
|
for audio_file in [_SPEECH_WAV_16K_MONO, _SPEECH_WAV_16K_MONO]:
|
|
classification_result_list = classifier.classify(
|
|
self._read_wav_file(audio_file))
|
|
self._check_yamnet_result(
|
|
classification_result_list, expected_num_categories=1)
|
|
|
|
def test_allow_list_option(self):
|
|
with _AudioClassifier.create_from_options(
|
|
_AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
classifier_options=_ClassifierOptions(
|
|
category_allowlist=['Speech']))) as classifier:
|
|
for audio_file in [_SPEECH_WAV_16K_MONO, _SPEECH_WAV_16K_MONO]:
|
|
classification_result_list = classifier.classify(
|
|
self._read_wav_file(audio_file))
|
|
self._check_yamnet_result(
|
|
classification_result_list, expected_num_categories=1)
|
|
|
|
def test_combined_allowlist_and_denylist(self):
|
|
# Fails with combined allowlist and denylist
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
r'`category_allowlist` and `category_denylist` are mutually '
|
|
r'exclusive options.'):
|
|
options = _AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
classifier_options=_ClassifierOptions(
|
|
category_allowlist=['foo'], category_denylist=['bar']))
|
|
with _AudioClassifier.create_from_options(options) as unused_classifier:
|
|
pass
|
|
|
|
@parameterized.parameters((_TWO_HEADS_WAV_16K_MONO),
|
|
(_TWO_HEADS_WAV_44K_MONO))
|
|
def test_classify_with_two_heads_model_and_inputs_at_different_sample_rates(
|
|
self, audio_file):
|
|
with _AudioClassifier.create_from_model_path(
|
|
self.two_heads_model_path) as classifier:
|
|
classification_result_list = classifier.classify(
|
|
self._read_wav_file(audio_file))
|
|
self._check_two_heads_result(classification_result_list)
|
|
|
|
def test_classify_with_two_heads_model(self):
|
|
with _AudioClassifier.create_from_model_path(
|
|
self.two_heads_model_path) as classifier:
|
|
for audio_file in [_TWO_HEADS_WAV_16K_MONO, _TWO_HEADS_WAV_44K_MONO]:
|
|
classification_result_list = classifier.classify(
|
|
self._read_wav_file(audio_file))
|
|
self._check_two_heads_result(classification_result_list)
|
|
|
|
def test_classify_with_two_heads_model_with_max_results(self):
|
|
with _AudioClassifier.create_from_options(
|
|
_AudioClassifierOptions(
|
|
base_options=_BaseOptions(
|
|
model_asset_path=self.two_heads_model_path),
|
|
classifier_options=_ClassifierOptions(
|
|
max_results=1))) as classifier:
|
|
for audio_file in [_TWO_HEADS_WAV_16K_MONO, _TWO_HEADS_WAV_44K_MONO]:
|
|
classification_result_list = classifier.classify(
|
|
self._read_wav_file(audio_file))
|
|
self._check_two_heads_result(classification_result_list, 1, 1)
|
|
|
|
def test_missing_sample_rate_in_audio_clips_mode(self):
|
|
options = _AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
running_mode=_RUNNING_MODE.AUDIO_CLIPS)
|
|
with self.assertRaisesRegex(ValueError,
|
|
r'Must provide the audio sample rate'):
|
|
with _AudioClassifier.create_from_options(options) as classifier:
|
|
classifier.classify(_AudioData(buffer_length=100))
|
|
|
|
def test_missing_sample_rate_in_audio_stream_mode(self):
|
|
options = _AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
running_mode=_RUNNING_MODE.AUDIO_STREAM,
|
|
result_callback=mock.MagicMock())
|
|
with self.assertRaisesRegex(ValueError,
|
|
r'provide the audio sample rate in audio data'):
|
|
with _AudioClassifier.create_from_options(options) as classifier:
|
|
classifier.classify(_AudioData(buffer_length=100))
|
|
|
|
def test_missing_result_callback(self):
|
|
options = _AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
running_mode=_RUNNING_MODE.AUDIO_STREAM)
|
|
with self.assertRaisesRegex(ValueError,
|
|
r'result callback must be provided'):
|
|
with _AudioClassifier.create_from_options(options) as unused_classifier:
|
|
pass
|
|
|
|
def test_illegal_result_callback(self):
|
|
options = _AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
running_mode=_RUNNING_MODE.AUDIO_CLIPS,
|
|
result_callback=mock.MagicMock())
|
|
with self.assertRaisesRegex(ValueError,
|
|
r'result callback should not be provided'):
|
|
with _AudioClassifier.create_from_options(options) as unused_classifier:
|
|
pass
|
|
|
|
def test_calling_classify_in_audio_stream_mode(self):
|
|
options = _AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
running_mode=_RUNNING_MODE.AUDIO_STREAM,
|
|
result_callback=mock.MagicMock())
|
|
with _AudioClassifier.create_from_options(options) as classifier:
|
|
with self.assertRaisesRegex(ValueError,
|
|
r'not initialized with the audio clips mode'):
|
|
classifier.classify(self._read_wav_file(_SPEECH_WAV_16K_MONO))
|
|
|
|
def test_calling_classify_async_in_audio_clips_mode(self):
|
|
options = _AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
running_mode=_RUNNING_MODE.AUDIO_CLIPS)
|
|
with _AudioClassifier.create_from_options(options) as classifier:
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'not initialized with the audio stream mode'):
|
|
classifier.classify_async(self._read_wav_file(_SPEECH_WAV_16K_MONO), 0)
|
|
|
|
def test_classify_async_calls_with_illegal_timestamp(self):
|
|
options = _AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
running_mode=_RUNNING_MODE.AUDIO_STREAM,
|
|
result_callback=mock.MagicMock())
|
|
with _AudioClassifier.create_from_options(options) as classifier:
|
|
classifier.classify_async(self._read_wav_file(_SPEECH_WAV_16K_MONO), 100)
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'Input timestamp must be monotonically increasing'):
|
|
classifier.classify_async(self._read_wav_file(_SPEECH_WAV_16K_MONO), 0)
|
|
|
|
@parameterized.parameters((_SPEECH_WAV_16K_MONO), (_SPEECH_WAV_48K_MONO))
|
|
def test_classify_async(self, audio_file):
|
|
classification_result_list = []
|
|
|
|
def save_result(result: _AudioClassifierResult, timestamp_ms: int):
|
|
result.timestamp_ms = timestamp_ms
|
|
classification_result_list.append(result)
|
|
|
|
options = _AudioClassifierOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.yamnet_model_path),
|
|
running_mode=_RUNNING_MODE.AUDIO_STREAM,
|
|
classifier_options=_ClassifierOptions(max_results=1),
|
|
result_callback=save_result)
|
|
classifier = _AudioClassifier.create_from_options(options)
|
|
audio_data_list = self._read_wav_file_as_stream(audio_file)
|
|
for audio_data, timestamp_ms in audio_data_list:
|
|
classifier.classify_async(audio_data, timestamp_ms)
|
|
classifier.close()
|
|
self._check_yamnet_result(
|
|
classification_result_list, expected_num_categories=1)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main()
|