350fbb2100
GitOrigin-RevId: d073f8e21be2fcc0e503cb97c6695078b6b75310
369 lines
14 KiB
C++
369 lines
14 KiB
C++
// Copyright 2019 The MediaPipe Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "absl/memory/memory.h"
|
|
#include "mediapipe/calculators/tensor/inference_calculator.h"
|
|
#include "mediapipe/util/tflite/config.h"
|
|
|
|
#if MEDIAPIPE_TFLITE_GL_INFERENCE
|
|
#include "mediapipe/gpu/gl_calculator_helper.h"
|
|
#include "mediapipe/gpu/gpu_buffer.h"
|
|
#include "mediapipe/util/tflite/tflite_gpu_runner.h"
|
|
#include "tensorflow/lite/delegates/gpu/common/shape.h"
|
|
#include "tensorflow/lite/delegates/gpu/gl_delegate.h"
|
|
#endif // MEDIAPIPE_TFLITE_GL_INFERENCE
|
|
|
|
#if defined(MEDIAPIPE_ANDROID)
|
|
#include "mediapipe/util/android/file/base/file.h"
|
|
#include "mediapipe/util/android/file/base/filesystem.h"
|
|
#include "mediapipe/util/android/file/base/helpers.h"
|
|
#endif // ANDROID
|
|
|
|
namespace mediapipe {
|
|
namespace api2 {
|
|
|
|
class InferenceCalculatorGlImpl
|
|
: public NodeImpl<InferenceCalculatorGl, InferenceCalculatorGlImpl> {
|
|
public:
|
|
static absl::Status UpdateContract(CalculatorContract* cc);
|
|
|
|
absl::Status Open(CalculatorContext* cc) override;
|
|
absl::Status Process(CalculatorContext* cc) override;
|
|
absl::Status Close(CalculatorContext* cc) override;
|
|
|
|
private:
|
|
absl::Status ReadKernelsFromFile();
|
|
absl::Status WriteKernelsToFile();
|
|
absl::Status LoadModel(CalculatorContext* cc);
|
|
absl::Status LoadDelegate(CalculatorContext* cc);
|
|
absl::Status InitTFLiteGPURunner(CalculatorContext* cc);
|
|
|
|
// TfLite requires us to keep the model alive as long as the interpreter is.
|
|
Packet<TfLiteModelPtr> model_packet_;
|
|
std::unique_ptr<tflite::Interpreter> interpreter_;
|
|
TfLiteDelegatePtr delegate_;
|
|
|
|
#if MEDIAPIPE_TFLITE_GL_INFERENCE
|
|
mediapipe::GlCalculatorHelper gpu_helper_;
|
|
std::unique_ptr<tflite::gpu::TFLiteGPURunner> tflite_gpu_runner_;
|
|
bool allow_precision_loss_ = false;
|
|
mediapipe::InferenceCalculatorOptions::Delegate::Gpu::API
|
|
tflite_gpu_runner_api_;
|
|
#endif // MEDIAPIPE_TFLITE_GL_INFERENCE
|
|
|
|
#if MEDIAPIPE_TFLITE_GPU_SUPPORTED
|
|
std::vector<Tensor::Shape> output_shapes_;
|
|
std::vector<std::unique_ptr<Tensor>> gpu_buffers_in_;
|
|
std::vector<std::unique_ptr<Tensor>> gpu_buffers_out_;
|
|
#endif // MEDIAPIPE_TFLITE_GPU_SUPPORTED
|
|
|
|
bool use_advanced_gpu_api_ = false;
|
|
bool use_gpu_delegate_ = false;
|
|
|
|
bool use_kernel_caching_ = false;
|
|
std::string cached_kernel_filename_;
|
|
};
|
|
|
|
absl::Status InferenceCalculatorGlImpl::UpdateContract(CalculatorContract* cc) {
|
|
const auto& options = cc->Options<::mediapipe::InferenceCalculatorOptions>();
|
|
RET_CHECK(!options.model_path().empty() ^ kSideInModel(cc).IsConnected())
|
|
<< "Either model as side packet or model path in options is required.";
|
|
|
|
MP_RETURN_IF_ERROR(mediapipe::GlCalculatorHelper::UpdateContract(cc));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorGlImpl::Open(CalculatorContext* cc) {
|
|
const auto& options = cc->Options<::mediapipe::InferenceCalculatorOptions>();
|
|
use_advanced_gpu_api_ = options.has_delegate() &&
|
|
options.delegate().has_gpu() &&
|
|
options.delegate().gpu().use_advanced_gpu_api();
|
|
allow_precision_loss_ = options.delegate().gpu().allow_precision_loss();
|
|
tflite_gpu_runner_api_ = options.delegate().gpu().api();
|
|
use_kernel_caching_ = use_advanced_gpu_api_ &&
|
|
options.delegate().gpu().has_cached_kernel_path();
|
|
use_gpu_delegate_ = !use_advanced_gpu_api_;
|
|
|
|
if (use_kernel_caching_) {
|
|
#ifdef MEDIAPIPE_ANDROID
|
|
cached_kernel_filename_ = options.delegate().gpu().cached_kernel_path() +
|
|
mediapipe::File::Basename(options.model_path()) +
|
|
".ker";
|
|
#endif // MEDIAPIPE_ANDROID
|
|
}
|
|
|
|
// When use_advanced_gpu_api_, model loading is handled in InitTFLiteGPURunner
|
|
// for everything.
|
|
if (!use_advanced_gpu_api_) {
|
|
MP_RETURN_IF_ERROR(LoadModel(cc));
|
|
}
|
|
|
|
MP_RETURN_IF_ERROR(gpu_helper_.Open(cc));
|
|
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext([this,
|
|
&cc]() -> ::mediapipe::Status {
|
|
return use_advanced_gpu_api_ ? InitTFLiteGPURunner(cc) : LoadDelegate(cc);
|
|
}));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorGlImpl::Process(CalculatorContext* cc) {
|
|
if (kInTensors(cc).IsEmpty()) {
|
|
return absl::OkStatus();
|
|
}
|
|
const auto& input_tensors = *kInTensors(cc);
|
|
RET_CHECK(!input_tensors.empty());
|
|
auto output_tensors = absl::make_unique<std::vector<Tensor>>();
|
|
|
|
if (use_advanced_gpu_api_) {
|
|
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext(
|
|
[this, &input_tensors, &output_tensors]() -> ::mediapipe::Status {
|
|
for (int i = 0; i < input_tensors.size(); ++i) {
|
|
MP_RETURN_IF_ERROR(tflite_gpu_runner_->BindSSBOToInputTensor(
|
|
input_tensors[i].GetOpenGlBufferReadView().name(), i));
|
|
}
|
|
output_tensors->reserve(output_shapes_.size());
|
|
for (int i = 0; i < output_shapes_.size(); ++i) {
|
|
output_tensors->emplace_back(Tensor::ElementType::kFloat32,
|
|
output_shapes_[i]);
|
|
MP_RETURN_IF_ERROR(tflite_gpu_runner_->BindSSBOToOutputTensor(
|
|
output_tensors->back().GetOpenGlBufferWriteView().name(), i));
|
|
}
|
|
return absl::OkStatus();
|
|
}));
|
|
} else {
|
|
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext(
|
|
[this, &input_tensors]() -> ::mediapipe::Status {
|
|
// Explicitly copy input.
|
|
for (int i = 0; i < input_tensors.size(); ++i) {
|
|
glBindBuffer(GL_COPY_READ_BUFFER,
|
|
input_tensors[i].GetOpenGlBufferReadView().name());
|
|
glBindBuffer(GL_COPY_WRITE_BUFFER,
|
|
gpu_buffers_in_[i]->GetOpenGlBufferWriteView().name());
|
|
glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, 0, 0,
|
|
input_tensors[i].bytes());
|
|
}
|
|
return absl::OkStatus();
|
|
}));
|
|
}
|
|
|
|
// Run inference.
|
|
if (use_advanced_gpu_api_) {
|
|
RET_CHECK(tflite_gpu_runner_->Invoke().ok());
|
|
} else {
|
|
RET_CHECK_EQ(interpreter_->Invoke(), kTfLiteOk);
|
|
}
|
|
|
|
if (use_gpu_delegate_) {
|
|
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext(
|
|
[this, &output_tensors]() -> ::mediapipe::Status {
|
|
output_tensors->reserve(output_shapes_.size());
|
|
for (int i = 0; i < output_shapes_.size(); ++i) {
|
|
const auto& t = gpu_buffers_out_[i];
|
|
output_tensors->emplace_back(Tensor::ElementType::kFloat32,
|
|
gpu_buffers_out_[i]->shape());
|
|
auto read_view = t->GetOpenGlBufferReadView();
|
|
glBindBuffer(GL_COPY_READ_BUFFER, read_view.name());
|
|
auto write_view = output_tensors->back().GetOpenGlBufferWriteView();
|
|
glBindBuffer(GL_COPY_WRITE_BUFFER, write_view.name());
|
|
glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, 0, 0,
|
|
t->bytes());
|
|
}
|
|
return absl::OkStatus();
|
|
}));
|
|
}
|
|
// Output tensors are already bound if use_advanced_gpu_api_ is true.
|
|
|
|
kOutTensors(cc).Send(std::move(output_tensors));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorGlImpl::WriteKernelsToFile() {
|
|
#ifdef MEDIAPIPE_ANDROID
|
|
if (use_kernel_caching_) {
|
|
// Save kernel file.
|
|
auto kernel_cache = absl::make_unique<std::vector<uint8_t>>(
|
|
tflite_gpu_runner_->GetSerializedBinaryCache());
|
|
std::string cache_str(kernel_cache->begin(), kernel_cache->end());
|
|
MP_RETURN_IF_ERROR(
|
|
mediapipe::file::SetContents(cached_kernel_filename_, cache_str));
|
|
}
|
|
#endif // MEDIAPIPE_ANDROID
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorGlImpl::Close(CalculatorContext* cc) {
|
|
MP_RETURN_IF_ERROR(WriteKernelsToFile());
|
|
if (use_gpu_delegate_) {
|
|
MP_RETURN_IF_ERROR(gpu_helper_.RunInGlContext([this]() -> Status {
|
|
gpu_buffers_in_.clear();
|
|
gpu_buffers_out_.clear();
|
|
return absl::OkStatus();
|
|
}));
|
|
}
|
|
|
|
interpreter_ = nullptr;
|
|
delegate_ = nullptr;
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorGlImpl::ReadKernelsFromFile() {
|
|
#ifdef MEDIAPIPE_ANDROID
|
|
if (use_kernel_caching_) {
|
|
// Load pre-compiled kernel file.
|
|
if (mediapipe::File::Exists(cached_kernel_filename_)) {
|
|
std::string cache_str;
|
|
MP_RETURN_IF_ERROR(
|
|
mediapipe::file::GetContents(cached_kernel_filename_, &cache_str));
|
|
std::vector<uint8_t> cache_vec(cache_str.begin(), cache_str.end());
|
|
tflite_gpu_runner_->SetSerializedBinaryCache(std::move(cache_vec));
|
|
}
|
|
}
|
|
#endif // MEDIAPIPE_ANDROID
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorGlImpl::InitTFLiteGPURunner(
|
|
CalculatorContext* cc) {
|
|
ASSIGN_OR_RETURN(model_packet_, GetModelAsPacket(cc));
|
|
const auto& model = *model_packet_.Get();
|
|
tflite::ops::builtin::BuiltinOpResolver op_resolver =
|
|
kSideInCustomOpResolver(cc).GetOr(
|
|
tflite::ops::builtin::BuiltinOpResolver());
|
|
|
|
// Create runner
|
|
tflite::gpu::InferenceOptions options;
|
|
options.priority1 = allow_precision_loss_
|
|
? tflite::gpu::InferencePriority::MIN_LATENCY
|
|
: tflite::gpu::InferencePriority::MAX_PRECISION;
|
|
options.priority2 = tflite::gpu::InferencePriority::AUTO;
|
|
options.priority3 = tflite::gpu::InferencePriority::AUTO;
|
|
options.usage = tflite::gpu::InferenceUsage::SUSTAINED_SPEED;
|
|
tflite_gpu_runner_ = std::make_unique<tflite::gpu::TFLiteGPURunner>(options);
|
|
switch (tflite_gpu_runner_api_) {
|
|
case mediapipe::InferenceCalculatorOptions::Delegate::Gpu::OPENGL: {
|
|
tflite_gpu_runner_->ForceOpenGL();
|
|
break;
|
|
}
|
|
case mediapipe::InferenceCalculatorOptions::Delegate::Gpu::OPENCL: {
|
|
tflite_gpu_runner_->ForceOpenCL();
|
|
break;
|
|
}
|
|
case mediapipe::InferenceCalculatorOptions::Delegate::Gpu::ANY: {
|
|
// Do not need to force any specific API.
|
|
break;
|
|
}
|
|
}
|
|
MP_RETURN_IF_ERROR(
|
|
tflite_gpu_runner_->InitializeWithModel(model, op_resolver));
|
|
|
|
// Create and bind OpenGL buffers for outputs.
|
|
// The buffers are created once and their ids are passed to calculator outputs
|
|
output_shapes_.resize(tflite_gpu_runner_->outputs_size());
|
|
for (int i = 0; i < tflite_gpu_runner_->outputs_size(); ++i) {
|
|
output_shapes_[i] = {tflite_gpu_runner_->GetOutputShapes()[i].b,
|
|
tflite_gpu_runner_->GetOutputShapes()[i].h,
|
|
tflite_gpu_runner_->GetOutputShapes()[i].w,
|
|
tflite_gpu_runner_->GetOutputShapes()[i].c};
|
|
}
|
|
|
|
MP_RETURN_IF_ERROR(ReadKernelsFromFile());
|
|
|
|
MP_RETURN_IF_ERROR(tflite_gpu_runner_->Build());
|
|
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorGlImpl::LoadModel(CalculatorContext* cc) {
|
|
ASSIGN_OR_RETURN(model_packet_, GetModelAsPacket(cc));
|
|
const auto& model = *model_packet_.Get();
|
|
tflite::ops::builtin::BuiltinOpResolver op_resolver =
|
|
kSideInCustomOpResolver(cc).GetOr(
|
|
tflite::ops::builtin::BuiltinOpResolver());
|
|
|
|
tflite::InterpreterBuilder(model, op_resolver)(&interpreter_);
|
|
RET_CHECK(interpreter_);
|
|
|
|
#if defined(__EMSCRIPTEN__)
|
|
interpreter_->SetNumThreads(1);
|
|
#else
|
|
interpreter_->SetNumThreads(
|
|
cc->Options<mediapipe::InferenceCalculatorOptions>().cpu_num_thread());
|
|
#endif // __EMSCRIPTEN__
|
|
|
|
RET_CHECK_EQ(interpreter_->AllocateTensors(), kTfLiteOk);
|
|
// TODO: Support quantized tensors.
|
|
CHECK(interpreter_->tensor(interpreter_->inputs()[0])->quantization.type !=
|
|
kTfLiteAffineQuantization);
|
|
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorGlImpl::LoadDelegate(CalculatorContext* cc) {
|
|
// Configure and create the delegate.
|
|
TfLiteGpuDelegateOptions options = TfLiteGpuDelegateOptionsDefault();
|
|
options.compile_options.precision_loss_allowed = 1;
|
|
options.compile_options.preferred_gl_object_type =
|
|
TFLITE_GL_OBJECT_TYPE_FASTEST;
|
|
options.compile_options.dynamic_batch_enabled = 0;
|
|
options.compile_options.inline_parameters = 1;
|
|
delegate_ = TfLiteDelegatePtr(TfLiteGpuDelegateCreate(&options),
|
|
&TfLiteGpuDelegateDelete);
|
|
|
|
// Get input image sizes.
|
|
const auto& input_indices = interpreter_->inputs();
|
|
for (int i = 0; i < input_indices.size(); ++i) {
|
|
const TfLiteTensor* tensor = interpreter_->tensor(input_indices[i]);
|
|
gpu_buffers_in_.emplace_back(absl::make_unique<Tensor>(
|
|
Tensor::ElementType::kFloat32,
|
|
Tensor::Shape{std::vector<int>{
|
|
tensor->dims->data, tensor->dims->data + tensor->dims->size}}));
|
|
RET_CHECK_EQ(TfLiteGpuDelegateBindBufferToTensor(
|
|
delegate_.get(),
|
|
gpu_buffers_in_.back()->GetOpenGlBufferWriteView().name(),
|
|
interpreter_->inputs()[i]),
|
|
kTfLiteOk);
|
|
}
|
|
interpreter_->SetAllowBufferHandleOutput(true);
|
|
// Get output image sizes.
|
|
const auto& output_indices = interpreter_->outputs();
|
|
output_shapes_.resize(output_indices.size());
|
|
// Create and bind output buffers.
|
|
for (int i = 0; i < output_shapes_.size(); ++i) {
|
|
const TfLiteTensor* tensor = interpreter_->tensor(output_indices[i]);
|
|
gpu_buffers_out_.emplace_back(absl::make_unique<Tensor>(
|
|
Tensor::ElementType::kFloat32,
|
|
Tensor::Shape{std::vector<int>{
|
|
tensor->dims->data, tensor->dims->data + tensor->dims->size}}));
|
|
RET_CHECK_EQ(TfLiteGpuDelegateBindBufferToTensor(
|
|
delegate_.get(),
|
|
gpu_buffers_out_.back()->GetOpenGlBufferWriteView().name(),
|
|
output_indices[i]),
|
|
kTfLiteOk);
|
|
}
|
|
|
|
// Must call this last.
|
|
RET_CHECK_EQ(interpreter_->ModifyGraphWithDelegate(delegate_.get()),
|
|
kTfLiteOk);
|
|
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
} // namespace api2
|
|
} // namespace mediapipe
|