54d208aa5c
PiperOrigin-RevId: 524345939
163 lines
6.2 KiB
C++
163 lines
6.2 KiB
C++
// Copyright 2019 The MediaPipe Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "absl/status/status.h"
|
|
#include "absl/status/statusor.h"
|
|
#include "mediapipe/calculators/tensor/inference_calculator.h"
|
|
#include "mediapipe/calculators/tensor/inference_calculator_utils.h"
|
|
#include "mediapipe/calculators/tensor/inference_interpreter_delegate_runner.h"
|
|
#include "mediapipe/calculators/tensor/inference_runner.h"
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#if defined(MEDIAPIPE_ANDROID)
|
|
#include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h"
|
|
#endif // ANDROID
|
|
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
|
|
|
namespace mediapipe {
|
|
namespace api2 {
|
|
|
|
class InferenceCalculatorCpuImpl
|
|
: public NodeImpl<InferenceCalculatorCpu, InferenceCalculatorCpuImpl> {
|
|
public:
|
|
static absl::Status UpdateContract(CalculatorContract* cc);
|
|
|
|
absl::Status Open(CalculatorContext* cc) override;
|
|
absl::Status Process(CalculatorContext* cc) override;
|
|
absl::Status Close(CalculatorContext* cc) override;
|
|
|
|
private:
|
|
absl::StatusOr<std::unique_ptr<InferenceRunner>> CreateInferenceRunner(
|
|
CalculatorContext* cc);
|
|
absl::StatusOr<TfLiteDelegatePtr> MaybeCreateDelegate(CalculatorContext* cc);
|
|
|
|
std::unique_ptr<InferenceRunner> inference_runner_;
|
|
};
|
|
|
|
absl::Status InferenceCalculatorCpuImpl::UpdateContract(
|
|
CalculatorContract* cc) {
|
|
const auto& options = cc->Options<mediapipe::InferenceCalculatorOptions>();
|
|
RET_CHECK(!options.model_path().empty() ^ kSideInModel(cc).IsConnected())
|
|
<< "Either model as side packet or model path in options is required.";
|
|
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorCpuImpl::Open(CalculatorContext* cc) {
|
|
ASSIGN_OR_RETURN(inference_runner_, CreateInferenceRunner(cc));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorCpuImpl::Process(CalculatorContext* cc) {
|
|
if (kInTensors(cc).IsEmpty()) {
|
|
return absl::OkStatus();
|
|
}
|
|
const auto& input_tensors = *kInTensors(cc);
|
|
RET_CHECK(!input_tensors.empty());
|
|
|
|
ASSIGN_OR_RETURN(std::vector<Tensor> output_tensors,
|
|
inference_runner_->Run(cc, input_tensors));
|
|
kOutTensors(cc).Send(std::move(output_tensors));
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::Status InferenceCalculatorCpuImpl::Close(CalculatorContext* cc) {
|
|
inference_runner_ = nullptr;
|
|
return absl::OkStatus();
|
|
}
|
|
|
|
absl::StatusOr<std::unique_ptr<InferenceRunner>>
|
|
InferenceCalculatorCpuImpl::CreateInferenceRunner(CalculatorContext* cc) {
|
|
ASSIGN_OR_RETURN(auto model_packet, GetModelAsPacket(cc));
|
|
ASSIGN_OR_RETURN(auto op_resolver_packet, GetOpResolverAsPacket(cc));
|
|
const int interpreter_num_threads =
|
|
cc->Options<mediapipe::InferenceCalculatorOptions>().cpu_num_thread();
|
|
ASSIGN_OR_RETURN(TfLiteDelegatePtr delegate, MaybeCreateDelegate(cc));
|
|
return CreateInferenceInterpreterDelegateRunner(
|
|
std::move(model_packet), std::move(op_resolver_packet),
|
|
std::move(delegate), interpreter_num_threads);
|
|
}
|
|
|
|
absl::StatusOr<TfLiteDelegatePtr>
|
|
InferenceCalculatorCpuImpl::MaybeCreateDelegate(CalculatorContext* cc) {
|
|
const auto& calculator_opts =
|
|
cc->Options<mediapipe::InferenceCalculatorOptions>();
|
|
auto opts_delegate = calculator_opts.delegate();
|
|
if (!kDelegate(cc).IsEmpty()) {
|
|
const mediapipe::InferenceCalculatorOptions::Delegate&
|
|
input_side_packet_delegate = kDelegate(cc).Get();
|
|
RET_CHECK(
|
|
input_side_packet_delegate.has_tflite() ||
|
|
input_side_packet_delegate.has_xnnpack() ||
|
|
input_side_packet_delegate.has_nnapi() ||
|
|
input_side_packet_delegate.delegate_case() ==
|
|
mediapipe::InferenceCalculatorOptions::Delegate::DELEGATE_NOT_SET)
|
|
<< "inference_calculator_cpu only supports delegate input side packet "
|
|
<< "for TFLite, XNNPack and Nnapi";
|
|
opts_delegate.MergeFrom(input_side_packet_delegate);
|
|
}
|
|
const bool opts_has_delegate =
|
|
calculator_opts.has_delegate() || !kDelegate(cc).IsEmpty();
|
|
if (opts_has_delegate && opts_delegate.has_tflite()) {
|
|
// Default tflite inference requested - no need to modify graph.
|
|
return nullptr;
|
|
}
|
|
|
|
#if defined(MEDIAPIPE_ANDROID)
|
|
const bool nnapi_requested = opts_has_delegate ? opts_delegate.has_nnapi()
|
|
: calculator_opts.use_nnapi();
|
|
if (nnapi_requested) {
|
|
// Attempt to use NNAPI.
|
|
// If not supported, the default CPU delegate will be created and used.
|
|
tflite::StatefulNnApiDelegate::Options options;
|
|
const auto& nnapi = opts_delegate.nnapi();
|
|
options.allow_fp16 = true;
|
|
// Set up cache_dir and model_token for NNAPI compilation cache.
|
|
options.cache_dir =
|
|
nnapi.has_cache_dir() ? nnapi.cache_dir().c_str() : nullptr;
|
|
options.model_token =
|
|
nnapi.has_model_token() ? nnapi.model_token().c_str() : nullptr;
|
|
options.accelerator_name = nnapi.has_accelerator_name()
|
|
? nnapi.accelerator_name().c_str()
|
|
: nullptr;
|
|
return TfLiteDelegatePtr(new tflite::StatefulNnApiDelegate(options),
|
|
[](TfLiteDelegate*) {});
|
|
}
|
|
#endif // MEDIAPIPE_ANDROID
|
|
|
|
#if defined(__EMSCRIPTEN__)
|
|
const bool use_xnnpack = true;
|
|
#else
|
|
const bool use_xnnpack = opts_has_delegate && opts_delegate.has_xnnpack();
|
|
#endif // defined(__EMSCRIPTEN__)
|
|
|
|
if (use_xnnpack) {
|
|
auto xnnpack_opts = TfLiteXNNPackDelegateOptionsDefault();
|
|
xnnpack_opts.num_threads =
|
|
GetXnnpackNumThreads(opts_has_delegate, opts_delegate);
|
|
return TfLiteDelegatePtr(TfLiteXNNPackDelegateCreate(&xnnpack_opts),
|
|
&TfLiteXNNPackDelegateDelete);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace api2
|
|
} // namespace mediapipe
|