219 lines
9.1 KiB
C++
219 lines
9.1 KiB
C++
// Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
// Copyright 2019 The MediaPipe Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// This version has been modified by MediaPipe authors to support argmax
|
|
// indices. Details of the modification is marked below in the code.
|
|
#include "mediapipe/util/tflite/operations/max_pool_argmax.h"
|
|
|
|
#include "tensorflow/lite/kernels/internal/common.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/padding.h"
|
|
|
|
namespace mediapipe {
|
|
namespace tflite_operations {
|
|
namespace {
|
|
|
|
constexpr int kDataInputTensor = 0;
|
|
constexpr int kOutputTensor = 0;
|
|
constexpr int kIndicesTensor = 1;
|
|
|
|
// These functions were copied from the following places:
|
|
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/internal/reference/reference_ops.h
|
|
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/pooling.cc
|
|
|
|
inline void MaxPoolArgmax(const ::tflite::PoolParams& params,
|
|
const ::tflite::RuntimeShape& input_shape,
|
|
const float* input_data,
|
|
const ::tflite::RuntimeShape& output_shape,
|
|
float* output_data, float* indices_data) {
|
|
// Start of copy from
|
|
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/internal/reference/reference_ops.h
|
|
// Start of MediaPipe modificiation.
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
|
|
const int input_height = input_shape.Dims(1);
|
|
const int input_width = input_shape.Dims(2);
|
|
const int output_height = output_shape.Dims(1);
|
|
const int output_width = output_shape.Dims(2);
|
|
const int stride_height = params.stride_height;
|
|
const int stride_width = params.stride_width;
|
|
for (int batch = 0; batch < batches; ++batch) {
|
|
for (int out_y = 0; out_y < output_height; ++out_y) {
|
|
for (int out_x = 0; out_x < output_width; ++out_x) {
|
|
for (int channel = 0; channel < depth; ++channel) {
|
|
const int in_x_origin =
|
|
(out_x * stride_width) - params.padding_values.width;
|
|
const int in_y_origin =
|
|
(out_y * stride_height) - params.padding_values.height;
|
|
// Compute the boundaries of the filter region clamped so as to
|
|
// ensure that the filter window fits in the input array.
|
|
const int filter_x_start = std::max(0, -in_x_origin);
|
|
const int filter_x_end =
|
|
std::min(params.filter_width, input_width - in_x_origin);
|
|
const int filter_y_start = std::max(0, -in_y_origin);
|
|
const int filter_y_end =
|
|
std::min(params.filter_height, input_height - in_y_origin);
|
|
float max = std::numeric_limits<float>::lowest();
|
|
int max_x = 0;
|
|
int max_y = 0;
|
|
for (int filter_y = filter_y_start; filter_y < filter_y_end;
|
|
++filter_y) {
|
|
for (int filter_x = filter_x_start; filter_x < filter_x_end;
|
|
++filter_x) {
|
|
const int in_x = in_x_origin + filter_x;
|
|
const int in_y = in_y_origin + filter_y;
|
|
float cur =
|
|
input_data[Offset(input_shape, batch, in_y, in_x, channel)];
|
|
if (cur > max) {
|
|
max = cur;
|
|
max_x = filter_x;
|
|
max_y = filter_y;
|
|
}
|
|
}
|
|
}
|
|
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
|
|
::tflite::ActivationFunctionWithMinMax(
|
|
max, params.float_activation_min,
|
|
params.float_activation_max);
|
|
if (indices_data) {
|
|
indices_data[Offset(output_shape, batch, out_y, out_x, channel)] =
|
|
max_y * params.filter_width + max_x + 0.1f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// End of MediaPipe modification.
|
|
// End of copy.
|
|
}
|
|
|
|
// Start of copy from
|
|
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/pooling.cc
|
|
// Start of MediaPipe modificiation.
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<const TfLitePoolParams*>(node->custom_initial_data);
|
|
TfLitePaddingValues* data_padding =
|
|
reinterpret_cast<TfLitePaddingValues*>(node->user_data);
|
|
|
|
TF_LITE_ENSURE_EQ(context, ::tflite::NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, ::tflite::NumOutputs(node), 2);
|
|
TfLiteTensor* output = ::tflite::GetOutput(context, node, kOutputTensor);
|
|
TF_LITE_ENSURE(context, output != nullptr);
|
|
TfLiteTensor* indices = ::tflite::GetOutput(context, node, kIndicesTensor);
|
|
TF_LITE_ENSURE(context, indices != nullptr);
|
|
const TfLiteTensor* input =
|
|
::tflite::GetInput(context, node, kDataInputTensor);
|
|
TF_LITE_ENSURE(context, input != nullptr);
|
|
TF_LITE_ENSURE_EQ(context, ::tflite::NumDimensions(input), 4);
|
|
TF_LITE_ENSURE_EQ(context, input->type, kTfLiteFloat32);
|
|
TF_LITE_ENSURE_EQ(context, output->type, kTfLiteFloat32);
|
|
TF_LITE_ENSURE_EQ(context, indices->type, kTfLiteFloat32);
|
|
|
|
int batches = input->dims->data[0];
|
|
int height = input->dims->data[1];
|
|
int width = input->dims->data[2];
|
|
int channels_out = input->dims->data[3];
|
|
|
|
// Matching GetWindowedOutputSize in TensorFlow.
|
|
auto padding = params->padding;
|
|
auto compute_out_size = [padding](int image_size, int filter_size,
|
|
int stride) -> int {
|
|
return padding == kTfLitePaddingSame ? (image_size + stride - 1) / stride
|
|
: padding == kTfLitePaddingValid
|
|
? (image_size - filter_size + stride) / stride
|
|
: 0;
|
|
};
|
|
|
|
int out_width =
|
|
compute_out_size(width, params->filter_width, params->stride_width);
|
|
int out_height =
|
|
compute_out_size(height, params->filter_height, params->stride_height);
|
|
|
|
data_padding->height = ::tflite::ComputePadding(
|
|
params->stride_height, 1, height, params->filter_height, out_height);
|
|
data_padding->width = ::tflite::ComputePadding(
|
|
params->stride_width, 1, width, params->filter_width, out_width);
|
|
|
|
TfLiteIntArray* output_size = TfLiteIntArrayCreate(4);
|
|
output_size->data[0] = batches;
|
|
output_size->data[1] = out_height;
|
|
output_size->data[2] = out_width;
|
|
output_size->data[3] = channels_out;
|
|
TfLiteIntArray* indices_size = TfLiteIntArrayCopy(output_size);
|
|
if (context->ResizeTensor(context, output, output_size) != kTfLiteOk) {
|
|
return kTfLiteError;
|
|
}
|
|
if (context->ResizeTensor(context, indices, indices_size) != kTfLiteOk) {
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<const TfLitePoolParams*>(node->custom_initial_data);
|
|
TfLitePaddingValues* data_padding =
|
|
reinterpret_cast<TfLitePaddingValues*>(node->user_data);
|
|
|
|
TfLiteTensor* output = ::tflite::GetOutput(context, node, kOutputTensor);
|
|
TF_LITE_ENSURE(context, output != nullptr);
|
|
TfLiteTensor* indices = ::tflite::GetOutput(context, node, kIndicesTensor);
|
|
TF_LITE_ENSURE(context, indices != nullptr);
|
|
const TfLiteTensor* input =
|
|
::tflite::GetInput(context, node, kDataInputTensor);
|
|
TF_LITE_ENSURE(context, input != nullptr);
|
|
|
|
float activation_min, activation_max;
|
|
::tflite::CalculateActivationRange(params->activation, &activation_min,
|
|
&activation_max);
|
|
::tflite::PoolParams op_params;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.filter_height = params->filter_height;
|
|
op_params.filter_width = params->filter_width;
|
|
op_params.padding_values.height = data_padding->height;
|
|
op_params.padding_values.width = data_padding->width;
|
|
op_params.float_activation_min = activation_min;
|
|
op_params.float_activation_max = activation_max;
|
|
MaxPoolArgmax(op_params, ::tflite::GetTensorShape(input),
|
|
::tflite::GetTensorData<float>(input),
|
|
::tflite::GetTensorShape(output),
|
|
::tflite::GetTensorData<float>(output),
|
|
::tflite::GetTensorData<float>(indices));
|
|
return kTfLiteOk;
|
|
}
|
|
// End of MediaPipe modification.
|
|
// End of copy.
|
|
|
|
} // namespace
|
|
|
|
TfLiteRegistration* RegisterMaxPoolingWithArgmax2D() {
|
|
static TfLiteRegistration reg = {
|
|
[](TfLiteContext*, const char*, size_t) -> void* {
|
|
return new TfLitePaddingValues();
|
|
},
|
|
[](TfLiteContext*, void* buffer) -> void {
|
|
delete reinterpret_cast<TfLitePaddingValues*>(buffer);
|
|
},
|
|
Prepare, Eval};
|
|
return ®
|
|
}
|
|
|
|
} // namespace tflite_operations
|
|
} // namespace mediapipe
|