mediapipe/mediapipe2/python/solutions/face_detection.py
2021-06-10 23:01:19 +00:00

104 lines
3.5 KiB
Python

# Copyright 2021 The MediaPipe Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MediaPipe Face Detection."""
import enum
from typing import NamedTuple, Union
import numpy as np
from mediapipe.framework.formats import detection_pb2
from mediapipe.framework.formats import location_data_pb2
# pylint: disable=unused-import
from mediapipe.calculators.tensor import image_to_tensor_calculator_pb2
from mediapipe.calculators.tensor import inference_calculator_pb2
from mediapipe.calculators.tensor import tensors_to_detections_calculator_pb2
from mediapipe.calculators.tflite import ssd_anchors_calculator_pb2
from mediapipe.calculators.util import non_max_suppression_calculator_pb2
# pylint: enable=unused-import
from mediapipe.python.solution_base import SolutionBase
BINARYPB_FILE_PATH = 'mediapipe/modules/face_detection/face_detection_front_cpu.binarypb'
def get_key_point(
detection: detection_pb2.Detection, key_point_enum: 'FaceKeyPoint'
) -> Union[None, location_data_pb2.LocationData.RelativeKeypoint]:
"""A convenience method to return a face key point by the FaceKeyPoint type.
Args:
detection: A detection proto message that contains face key points.
key_point_enum: A FaceKeyPoint type.
Returns:
A RelativeKeypoint proto message.
"""
if not detection or not detection.location_data:
return None
return detection.location_data.relative_keypoints[key_point_enum]
class FaceKeyPoint(enum.IntEnum):
"""The enum type of the six face detection key points."""
RIGHT_EYE = 0
LEFT_EYE = 1
NOSE_TIP = 2
MOUTH_CENTER = 3
RIGHT_EAR_TRAGION = 4
LEFT_EAR_TRAGION = 5
class FaceDetection(SolutionBase):
"""MediaPipe Face Detection.
MediaPipe Face Detection processes an RGB image and returns a list of the
detected face location data.
Please refer to
https://solutions.mediapipe.dev/face_detection#python-solution-api
for usage examples.
"""
def __init__(self, min_detection_confidence=0.5):
"""Initializes a MediaPipe Face Detection object.
Args:
min_detection_confidence: Minimum confidence value ([0.0, 1.0]) for face
detection to be considered successful. See details in
https://solutions.mediapipe.dev/face_detection#min_detection_confidence.
"""
super().__init__(
binary_graph_path=BINARYPB_FILE_PATH,
calculator_params={
'facedetectionfrontcommon__TensorsToDetectionsCalculator.min_score_thresh':
min_detection_confidence,
},
outputs=['detections'])
def process(self, image: np.ndarray) -> NamedTuple:
"""Processes an RGB image and returns a list of the detected face location data.
Args:
image: An RGB image represented as a numpy ndarray.
Raises:
RuntimeError: If the underlying graph throws any error.
ValueError: If the input image is not three channel RGB.
Returns:
A NamedTuple object with a "detections" field that contains a list of the
detected face location data.
"""
return super().process(input_data={'image': image})