511 lines
18 KiB
Python
511 lines
18 KiB
Python
# Copyright 2022 The MediaPipe Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tests for image segmenter."""
|
|
|
|
import enum
|
|
import os
|
|
from unittest import mock
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from mediapipe.python._framework_bindings import image as image_module
|
|
from mediapipe.python._framework_bindings import image_frame
|
|
from mediapipe.tasks.python.core import base_options as base_options_module
|
|
from mediapipe.tasks.python.test import test_utils
|
|
from mediapipe.tasks.python.vision import image_segmenter
|
|
from mediapipe.tasks.python.vision.core import vision_task_running_mode
|
|
|
|
ImageSegmenterResult = image_segmenter.ImageSegmenterResult
|
|
_BaseOptions = base_options_module.BaseOptions
|
|
_Image = image_module.Image
|
|
_ImageFormat = image_frame.ImageFormat
|
|
_ImageSegmenter = image_segmenter.ImageSegmenter
|
|
_ImageSegmenterOptions = image_segmenter.ImageSegmenterOptions
|
|
_RUNNING_MODE = vision_task_running_mode.VisionTaskRunningMode
|
|
|
|
_MODEL_FILE = 'deeplabv3.tflite'
|
|
_IMAGE_FILE = 'segmentation_input_rotation0.jpg'
|
|
_SEGMENTATION_FILE = 'segmentation_golden_rotation0.png'
|
|
_CAT_IMAGE = 'cat.jpg'
|
|
_CAT_MASK = 'cat_mask.jpg'
|
|
_MASK_MAGNIFICATION_FACTOR = 10
|
|
_MASK_SIMILARITY_THRESHOLD = 0.98
|
|
_TEST_DATA_DIR = 'mediapipe/tasks/testdata/vision'
|
|
_EXPECTED_LABELS = [
|
|
"background",
|
|
"aeroplane",
|
|
"bicycle",
|
|
"bird",
|
|
"boat",
|
|
"bottle",
|
|
"bus",
|
|
"car",
|
|
"cat",
|
|
"chair",
|
|
"cow",
|
|
"dining table",
|
|
"dog",
|
|
"horse",
|
|
"motorbike",
|
|
"person",
|
|
"potted plant",
|
|
"sheep",
|
|
"sofa",
|
|
"train",
|
|
"tv"
|
|
]
|
|
|
|
|
|
def _calculate_soft_iou(m1, m2):
|
|
intersection_sum = np.sum(m1 * m2)
|
|
union_sum = np.sum(m1 * m1) + np.sum(m2 * m2) - intersection_sum
|
|
|
|
if union_sum > 0:
|
|
return intersection_sum / union_sum
|
|
else:
|
|
return 0
|
|
|
|
|
|
def _similar_to_float_mask(actual_mask, expected_mask, similarity_threshold):
|
|
actual_mask = actual_mask.numpy_view()
|
|
expected_mask = expected_mask.numpy_view() / 255.0
|
|
|
|
return (
|
|
actual_mask.shape == expected_mask.shape
|
|
and _calculate_soft_iou(actual_mask, expected_mask) > similarity_threshold
|
|
)
|
|
|
|
|
|
def _similar_to_uint8_mask(actual_mask, expected_mask):
|
|
actual_mask_pixels = actual_mask.numpy_view().flatten()
|
|
expected_mask_pixels = expected_mask.numpy_view().flatten()
|
|
|
|
consistent_pixels = 0
|
|
num_pixels = len(expected_mask_pixels)
|
|
|
|
for index in range(num_pixels):
|
|
consistent_pixels += (
|
|
actual_mask_pixels[index] * _MASK_MAGNIFICATION_FACTOR
|
|
== expected_mask_pixels[index]
|
|
)
|
|
|
|
return consistent_pixels / num_pixels >= _MASK_SIMILARITY_THRESHOLD
|
|
|
|
|
|
class ModelFileType(enum.Enum):
|
|
FILE_CONTENT = 1
|
|
FILE_NAME = 2
|
|
|
|
|
|
class ImageSegmenterTest(parameterized.TestCase):
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
# Load the test input image.
|
|
self.test_image = _Image.create_from_file(
|
|
test_utils.get_test_data_path(os.path.join(_TEST_DATA_DIR, _IMAGE_FILE))
|
|
)
|
|
# Loads ground truth segmentation file.
|
|
gt_segmentation_data = cv2.imread(
|
|
test_utils.get_test_data_path(
|
|
os.path.join(_TEST_DATA_DIR, _SEGMENTATION_FILE)
|
|
),
|
|
cv2.IMREAD_GRAYSCALE,
|
|
)
|
|
self.test_seg_image = _Image(_ImageFormat.GRAY8, gt_segmentation_data)
|
|
self.model_path = test_utils.get_test_data_path(
|
|
os.path.join(_TEST_DATA_DIR, _MODEL_FILE)
|
|
)
|
|
|
|
def _load_segmentation_mask(self, file_path: str):
|
|
# Loads ground truth segmentation file.
|
|
gt_segmentation_data = cv2.imread(
|
|
test_utils.get_test_data_path(os.path.join(_TEST_DATA_DIR, file_path)),
|
|
cv2.IMREAD_GRAYSCALE,
|
|
)
|
|
return _Image(_ImageFormat.GRAY8, gt_segmentation_data)
|
|
|
|
def test_create_from_file_succeeds_with_valid_model_path(self):
|
|
# Creates with default option and valid model file successfully.
|
|
with _ImageSegmenter.create_from_model_path(self.model_path) as segmenter:
|
|
self.assertIsInstance(segmenter, _ImageSegmenter)
|
|
|
|
def test_create_from_options_succeeds_with_valid_model_path(self):
|
|
# Creates with options containing model file successfully.
|
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
|
options = _ImageSegmenterOptions(base_options=base_options)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
self.assertIsInstance(segmenter, _ImageSegmenter)
|
|
|
|
def test_create_from_options_fails_with_invalid_model_path(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, 'Unable to open file at /path/to/invalid/model.tflite'
|
|
):
|
|
base_options = _BaseOptions(
|
|
model_asset_path='/path/to/invalid/model.tflite'
|
|
)
|
|
options = _ImageSegmenterOptions(base_options=base_options)
|
|
_ImageSegmenter.create_from_options(options)
|
|
|
|
def test_create_from_options_succeeds_with_valid_model_content(self):
|
|
# Creates with options containing model content successfully.
|
|
with open(self.model_path, 'rb') as f:
|
|
base_options = _BaseOptions(model_asset_buffer=f.read())
|
|
options = _ImageSegmenterOptions(base_options=base_options)
|
|
segmenter = _ImageSegmenter.create_from_options(options)
|
|
self.assertIsInstance(segmenter, _ImageSegmenter)
|
|
|
|
@parameterized.parameters(
|
|
(ModelFileType.FILE_NAME,), (ModelFileType.FILE_CONTENT,)
|
|
)
|
|
def test_segment_succeeds_with_category_mask(self, model_file_type):
|
|
# Creates segmenter.
|
|
if model_file_type is ModelFileType.FILE_NAME:
|
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
|
elif model_file_type is ModelFileType.FILE_CONTENT:
|
|
with open(self.model_path, 'rb') as f:
|
|
model_content = f.read()
|
|
base_options = _BaseOptions(model_asset_buffer=model_content)
|
|
else:
|
|
# Should never happen
|
|
raise ValueError('model_file_type is invalid.')
|
|
|
|
options = _ImageSegmenterOptions(
|
|
base_options=base_options,
|
|
output_category_mask=True,
|
|
output_confidence_masks=False,
|
|
)
|
|
segmenter = _ImageSegmenter.create_from_options(options)
|
|
|
|
# Performs image segmentation on the input.
|
|
segmentation_result = segmenter.segment(self.test_image)
|
|
category_mask = segmentation_result.category_mask
|
|
result_pixels = category_mask.numpy_view().flatten()
|
|
|
|
# Check if data type of `category_mask` is correct.
|
|
self.assertEqual(result_pixels.dtype, np.uint8)
|
|
|
|
self.assertTrue(
|
|
_similar_to_uint8_mask(category_mask, self.test_seg_image),
|
|
(
|
|
'Number of pixels in the candidate mask differing from that of the'
|
|
f' ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.'
|
|
),
|
|
)
|
|
|
|
# Closes the segmenter explicitly when the segmenter is not used in
|
|
# a context.
|
|
segmenter.close()
|
|
|
|
def test_segment_succeeds_with_confidence_mask(self):
|
|
# Creates segmenter.
|
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
|
|
|
# Load the cat image.
|
|
test_image = _Image.create_from_file(
|
|
test_utils.get_test_data_path(os.path.join(_TEST_DATA_DIR, _CAT_IMAGE))
|
|
)
|
|
|
|
# Run segmentation on the model in CONFIDENCE_MASK mode.
|
|
options = _ImageSegmenterOptions(
|
|
base_options=base_options,
|
|
output_category_mask=False,
|
|
output_confidence_masks=True,
|
|
)
|
|
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
segmentation_result = segmenter.segment(test_image)
|
|
confidence_masks = segmentation_result.confidence_masks
|
|
|
|
# Check if confidence mask shape is correct.
|
|
self.assertLen(
|
|
confidence_masks,
|
|
21,
|
|
'Number of confidence masks must match with number of categories.',
|
|
)
|
|
|
|
# Loads ground truth segmentation file.
|
|
expected_mask = self._load_segmentation_mask(_CAT_MASK)
|
|
|
|
self.assertTrue(
|
|
_similar_to_float_mask(
|
|
confidence_masks[8], expected_mask, _MASK_SIMILARITY_THRESHOLD
|
|
)
|
|
)
|
|
|
|
def test_labels_succeeds(self):
|
|
expected_labels = _EXPECTED_LABELS
|
|
base_options = _BaseOptions(model_asset_path=self.model_path)
|
|
options = _ImageSegmenterOptions(
|
|
base_options=base_options, output_category_mask=True,
|
|
output_confidence_masks=False
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
# Performs image segmentation on the input.
|
|
actual_labels = segmenter.labels
|
|
self.assertListEqual(actual_labels, expected_labels)
|
|
|
|
def test_missing_result_callback(self):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
|
)
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'result callback must be provided'
|
|
):
|
|
with _ImageSegmenter.create_from_options(options) as unused_segmenter:
|
|
pass
|
|
|
|
@parameterized.parameters((_RUNNING_MODE.IMAGE), (_RUNNING_MODE.VIDEO))
|
|
def test_illegal_result_callback(self, running_mode):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=running_mode,
|
|
result_callback=mock.MagicMock(),
|
|
)
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'result callback should not be provided'
|
|
):
|
|
with _ImageSegmenter.create_from_options(options) as unused_segmenter:
|
|
pass
|
|
|
|
def test_calling_segment_for_video_in_image_mode(self):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.IMAGE,
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'not initialized with the video mode'
|
|
):
|
|
segmenter.segment_for_video(self.test_image, 0)
|
|
|
|
def test_calling_segment_async_in_image_mode(self):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.IMAGE,
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'not initialized with the live stream mode'
|
|
):
|
|
segmenter.segment_async(self.test_image, 0)
|
|
|
|
def test_calling_segment_in_video_mode(self):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.VIDEO,
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'not initialized with the image mode'
|
|
):
|
|
segmenter.segment(self.test_image)
|
|
|
|
def test_calling_segment_async_in_video_mode(self):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.VIDEO,
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'not initialized with the live stream mode'
|
|
):
|
|
segmenter.segment_async(self.test_image, 0)
|
|
|
|
def test_segment_for_video_with_out_of_order_timestamp(self):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.VIDEO,
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
unused_result = segmenter.segment_for_video(self.test_image, 1)
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'Input timestamp must be monotonically increasing'
|
|
):
|
|
segmenter.segment_for_video(self.test_image, 0)
|
|
|
|
def test_segment_for_video_in_category_mask_mode(self):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
output_category_mask=True,
|
|
output_confidence_masks=False,
|
|
running_mode=_RUNNING_MODE.VIDEO,
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
for timestamp in range(0, 300, 30):
|
|
segmentation_result = segmenter.segment_for_video(
|
|
self.test_image, timestamp
|
|
)
|
|
category_mask = segmentation_result.category_mask
|
|
self.assertTrue(
|
|
_similar_to_uint8_mask(category_mask, self.test_seg_image),
|
|
(
|
|
'Number of pixels in the candidate mask differing from that of'
|
|
f' the ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.'
|
|
),
|
|
)
|
|
|
|
def test_segment_for_video_in_confidence_mask_mode(self):
|
|
# Load the cat image.
|
|
test_image = _Image.create_from_file(
|
|
test_utils.get_test_data_path(os.path.join(_TEST_DATA_DIR, _CAT_IMAGE))
|
|
)
|
|
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.VIDEO,
|
|
output_category_mask=False,
|
|
output_confidence_masks=True,
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
for timestamp in range(0, 300, 30):
|
|
segmentation_result = segmenter.segment_for_video(test_image, timestamp)
|
|
confidence_masks = segmentation_result.confidence_masks
|
|
|
|
# Check if confidence mask shape is correct.
|
|
self.assertLen(
|
|
confidence_masks,
|
|
21,
|
|
'Number of confidence masks must match with number of categories.',
|
|
)
|
|
|
|
# Loads ground truth segmentation file.
|
|
expected_mask = self._load_segmentation_mask(_CAT_MASK)
|
|
self.assertTrue(
|
|
_similar_to_float_mask(
|
|
confidence_masks[8], expected_mask, _MASK_SIMILARITY_THRESHOLD
|
|
)
|
|
)
|
|
|
|
def test_calling_segment_in_live_stream_mode(self):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
|
result_callback=mock.MagicMock(),
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'not initialized with the image mode'
|
|
):
|
|
segmenter.segment(self.test_image)
|
|
|
|
def test_calling_segment_for_video_in_live_stream_mode(self):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
|
result_callback=mock.MagicMock(),
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'not initialized with the video mode'
|
|
):
|
|
segmenter.segment_for_video(self.test_image, 0)
|
|
|
|
def test_segment_async_calls_with_illegal_timestamp(self):
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
|
result_callback=mock.MagicMock(),
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
segmenter.segment_async(self.test_image, 100)
|
|
with self.assertRaisesRegex(
|
|
ValueError, r'Input timestamp must be monotonically increasing'
|
|
):
|
|
segmenter.segment_async(self.test_image, 0)
|
|
|
|
def test_segment_async_calls_in_category_mask_mode(self):
|
|
observed_timestamp_ms = -1
|
|
|
|
def check_result(
|
|
result: ImageSegmenterResult, output_image: _Image, timestamp_ms: int
|
|
):
|
|
# Get the output category mask.
|
|
category_mask = result.category_mask
|
|
self.assertEqual(output_image.width, self.test_image.width)
|
|
self.assertEqual(output_image.height, self.test_image.height)
|
|
self.assertEqual(output_image.width, self.test_seg_image.width)
|
|
self.assertEqual(output_image.height, self.test_seg_image.height)
|
|
self.assertTrue(
|
|
_similar_to_uint8_mask(category_mask, self.test_seg_image),
|
|
(
|
|
'Number of pixels in the candidate mask differing from that of'
|
|
f' the ground truth mask exceeds {_MASK_SIMILARITY_THRESHOLD}.'
|
|
),
|
|
)
|
|
self.assertLess(observed_timestamp_ms, timestamp_ms)
|
|
self.observed_timestamp_ms = timestamp_ms
|
|
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
output_category_mask=True,
|
|
output_confidence_masks=False,
|
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
|
result_callback=check_result,
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
for timestamp in range(0, 300, 30):
|
|
segmenter.segment_async(self.test_image, timestamp)
|
|
|
|
def test_segment_async_calls_in_confidence_mask_mode(self):
|
|
# Load the cat image.
|
|
test_image = _Image.create_from_file(
|
|
test_utils.get_test_data_path(os.path.join(_TEST_DATA_DIR, _CAT_IMAGE))
|
|
)
|
|
|
|
# Loads ground truth segmentation file.
|
|
expected_mask = self._load_segmentation_mask(_CAT_MASK)
|
|
observed_timestamp_ms = -1
|
|
|
|
def check_result(
|
|
result: ImageSegmenterResult, output_image: _Image, timestamp_ms: int
|
|
):
|
|
# Get the output category mask.
|
|
confidence_masks = result.confidence_masks
|
|
|
|
# Check if confidence mask shape is correct.
|
|
self.assertLen(
|
|
confidence_masks,
|
|
21,
|
|
'Number of confidence masks must match with number of categories.',
|
|
)
|
|
self.assertEqual(output_image.width, test_image.width)
|
|
self.assertEqual(output_image.height, test_image.height)
|
|
self.assertTrue(
|
|
_similar_to_float_mask(
|
|
confidence_masks[8], expected_mask, _MASK_SIMILARITY_THRESHOLD
|
|
)
|
|
)
|
|
self.assertLess(observed_timestamp_ms, timestamp_ms)
|
|
self.observed_timestamp_ms = timestamp_ms
|
|
|
|
options = _ImageSegmenterOptions(
|
|
base_options=_BaseOptions(model_asset_path=self.model_path),
|
|
running_mode=_RUNNING_MODE.LIVE_STREAM,
|
|
output_category_mask=False,
|
|
output_confidence_masks=True,
|
|
result_callback=check_result,
|
|
)
|
|
with _ImageSegmenter.create_from_options(options) as segmenter:
|
|
for timestamp in range(0, 300, 30):
|
|
segmenter.segment_async(test_image, timestamp)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main()
|