mediapipe/mediapipe/tasks/web/vision/image_segmenter/image_segmenter_test.ts
Sebastian Schmidt 18d893c697 Add scribble support to InteractiveSegmenter Web API
PiperOrigin-RevId: 529594131
2023-05-04 20:44:26 -07:00

296 lines
10 KiB
TypeScript

/**
* Copyright 2022 The MediaPipe Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import 'jasmine';
// Placeholder for internal dependency on encodeByteArray
import {CalculatorGraphConfig} from '../../../../framework/calculator_pb';
import {addJasmineCustomFloatEqualityTester, createSpyWasmModule, MediapipeTasksFake, SpyWasmModule, verifyGraph} from '../../../../tasks/web/core/task_runner_test_utils';
import {WasmImage} from '../../../../web/graph_runner/graph_runner_image_lib';
import {MPImage} from '../../../../tasks/web/vision/core/image';
import {ImageSegmenter} from './image_segmenter';
import {ImageSegmenterOptions} from './image_segmenter_options';
class ImageSegmenterFake extends ImageSegmenter implements MediapipeTasksFake {
calculatorName = 'mediapipe.tasks.vision.image_segmenter.ImageSegmenterGraph';
attachListenerSpies: jasmine.Spy[] = [];
graph: CalculatorGraphConfig|undefined;
fakeWasmModule: SpyWasmModule;
categoryMaskListener:
((images: WasmImage, timestamp: number) => void)|undefined;
confidenceMasksListener:
((images: WasmImage[], timestamp: number) => void)|undefined;
constructor() {
super(createSpyWasmModule(), /* glCanvas= */ null);
this.fakeWasmModule =
this.graphRunner.wasmModule as unknown as SpyWasmModule;
this.attachListenerSpies[0] = spyOn(this.graphRunner, 'attachImageListener')
.and.callFake((stream, listener) => {
expect(stream).toEqual('category_mask');
this.categoryMaskListener = listener;
});
this.attachListenerSpies[1] =
spyOn(this.graphRunner, 'attachImageVectorListener')
.and.callFake((stream, listener) => {
expect(stream).toEqual('confidence_masks');
this.confidenceMasksListener = listener;
});
spyOn(this.graphRunner, 'setGraph').and.callFake(binaryGraph => {
this.graph = CalculatorGraphConfig.deserializeBinary(binaryGraph);
});
spyOn(this.graphRunner, 'addGpuBufferAsImageToStream');
}
}
describe('ImageSegmenter', () => {
let imageSegmenter: ImageSegmenterFake;
beforeEach(async () => {
addJasmineCustomFloatEqualityTester();
imageSegmenter = new ImageSegmenterFake();
await imageSegmenter.setOptions(
{baseOptions: {modelAssetBuffer: new Uint8Array([])}});
});
afterEach(() => {
imageSegmenter.close();
});
it('initializes graph', async () => {
verifyGraph(imageSegmenter);
// Verify default options
expect(imageSegmenter.categoryMaskListener).not.toBeDefined();
expect(imageSegmenter.confidenceMasksListener).toBeDefined();
});
it('reloads graph when settings are changed', async () => {
await imageSegmenter.setOptions({displayNamesLocale: 'en'});
verifyGraph(imageSegmenter, ['displayNamesLocale', 'en']);
await imageSegmenter.setOptions({displayNamesLocale: 'de'});
verifyGraph(imageSegmenter, ['displayNamesLocale', 'de']);
});
it('can use custom models', async () => {
const newModel = new Uint8Array([0, 1, 2, 3, 4]);
const newModelBase64 = Buffer.from(newModel).toString('base64');
await imageSegmenter.setOptions({
baseOptions: {
modelAssetBuffer: newModel,
}
});
verifyGraph(
imageSegmenter,
/* expectedCalculatorOptions= */ undefined,
/* expectedBaseOptions= */
[
'modelAsset', {
fileContent: newModelBase64,
fileName: undefined,
fileDescriptorMeta: undefined,
filePointerMeta: undefined
}
]);
});
it('merges options', async () => {
await imageSegmenter.setOptions(
{baseOptions: {modelAssetBuffer: new Uint8Array([])}});
await imageSegmenter.setOptions({displayNamesLocale: 'en'});
verifyGraph(
imageSegmenter, [['baseOptions', 'modelAsset', 'fileContent'], '']);
verifyGraph(imageSegmenter, ['displayNamesLocale', 'en']);
});
describe('setOptions()', () => {
interface TestCase {
optionName: keyof ImageSegmenterOptions;
fieldPath: string[];
userValue: unknown;
graphValue: unknown;
defaultValue: unknown;
}
const testCases: TestCase[] = [{
optionName: 'displayNamesLocale',
fieldPath: ['displayNamesLocale'],
userValue: 'en',
graphValue: 'en',
defaultValue: 'en'
}];
for (const testCase of testCases) {
it(`can set ${testCase.optionName}`, async () => {
await imageSegmenter.setOptions(
{[testCase.optionName]: testCase.userValue});
verifyGraph(imageSegmenter, [testCase.fieldPath, testCase.graphValue]);
});
it(`can clear ${testCase.optionName}`, async () => {
await imageSegmenter.setOptions(
{[testCase.optionName]: testCase.userValue});
verifyGraph(imageSegmenter, [testCase.fieldPath, testCase.graphValue]);
await imageSegmenter.setOptions({[testCase.optionName]: undefined});
verifyGraph(
imageSegmenter, [testCase.fieldPath, testCase.defaultValue]);
});
}
});
it('doesn\'t support region of interest', () => {
expect(() => {
imageSegmenter.segment(
{} as HTMLImageElement,
{regionOfInterest: {left: 0, right: 0, top: 0, bottom: 0}}, () => {});
}).toThrowError('This task doesn\'t support region-of-interest.');
});
it('supports category mask', async () => {
const mask = new Uint8ClampedArray([1, 2, 3, 4]);
await imageSegmenter.setOptions(
{outputCategoryMask: true, outputConfidenceMasks: false});
// Pass the test data to our listener
imageSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
expect(imageSegmenter.categoryMaskListener).toBeDefined();
imageSegmenter.categoryMaskListener!
({data: mask, width: 2, height: 2},
/* timestamp= */ 1337);
});
// Invoke the image segmenter
return new Promise<void>(resolve => {
imageSegmenter.segment({} as HTMLImageElement, result => {
expect(imageSegmenter.fakeWasmModule._waitUntilIdle).toHaveBeenCalled();
expect(result.categoryMask).toBeInstanceOf(MPImage);
expect(result.confidenceMasks).not.toBeDefined();
expect(result.categoryMask!.width).toEqual(2);
expect(result.categoryMask!.height).toEqual(2);
resolve();
});
});
});
it('supports confidence masks', async () => {
const mask1 = new Float32Array([0.1, 0.2, 0.3, 0.4]);
const mask2 = new Float32Array([0.5, 0.6, 0.7, 0.8]);
await imageSegmenter.setOptions(
{outputCategoryMask: false, outputConfidenceMasks: true});
// Pass the test data to our listener
imageSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
expect(imageSegmenter.confidenceMasksListener).toBeDefined();
imageSegmenter.confidenceMasksListener!(
[
{data: mask1, width: 2, height: 2},
{data: mask2, width: 2, height: 2},
],
1337);
});
return new Promise<void>(resolve => {
// Invoke the image segmenter
imageSegmenter.segment({} as HTMLImageElement, result => {
expect(imageSegmenter.fakeWasmModule._waitUntilIdle).toHaveBeenCalled();
expect(result.categoryMask).not.toBeDefined();
expect(result.confidenceMasks![0]).toBeInstanceOf(MPImage);
expect(result.confidenceMasks![0].width).toEqual(2);
expect(result.confidenceMasks![0].height).toEqual(2);
expect(result.confidenceMasks![1]).toBeInstanceOf(MPImage);
resolve();
});
});
});
it('supports combined category and confidence masks', async () => {
const categoryMask = new Uint8ClampedArray([1]);
const confidenceMask1 = new Float32Array([0.0]);
const confidenceMask2 = new Float32Array([1.0]);
await imageSegmenter.setOptions(
{outputCategoryMask: true, outputConfidenceMasks: true});
// Pass the test data to our listener
imageSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
expect(imageSegmenter.categoryMaskListener).toBeDefined();
expect(imageSegmenter.confidenceMasksListener).toBeDefined();
imageSegmenter.categoryMaskListener!
({data: categoryMask, width: 1, height: 1}, 1337);
imageSegmenter.confidenceMasksListener!(
[
{data: confidenceMask1, width: 1, height: 1},
{data: confidenceMask2, width: 1, height: 1},
],
1337);
});
return new Promise<void>(resolve => {
// Invoke the image segmenter
imageSegmenter.segment({} as HTMLImageElement, result => {
expect(imageSegmenter.fakeWasmModule._waitUntilIdle).toHaveBeenCalled();
expect(result.categoryMask).toBeInstanceOf(MPImage);
expect(result.categoryMask!.width).toEqual(1);
expect(result.categoryMask!.height).toEqual(1);
expect(result.confidenceMasks![0]).toBeInstanceOf(MPImage);
expect(result.confidenceMasks![1]).toBeInstanceOf(MPImage);
resolve();
});
});
});
it('invokes listener once masks are available', async () => {
const categoryMask = new Uint8ClampedArray([1]);
const confidenceMask = new Float32Array([0.0]);
let listenerCalled = false;
await imageSegmenter.setOptions(
{outputCategoryMask: true, outputConfidenceMasks: true});
// Pass the test data to our listener
imageSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
expect(listenerCalled).toBeFalse();
imageSegmenter.categoryMaskListener!
({data: categoryMask, width: 1, height: 1}, 1337);
expect(listenerCalled).toBeFalse();
imageSegmenter.confidenceMasksListener!(
[
{data: confidenceMask, width: 1, height: 1},
],
1337);
expect(listenerCalled).toBeTrue();
});
return new Promise<void>(resolve => {
imageSegmenter.segment({} as HTMLImageElement, () => {
listenerCalled = true;
resolve();
});
});
});
});