296 lines
10 KiB
TypeScript
296 lines
10 KiB
TypeScript
/**
|
|
* Copyright 2022 The MediaPipe Authors.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
import 'jasmine';
|
|
|
|
// Placeholder for internal dependency on encodeByteArray
|
|
import {CalculatorGraphConfig} from '../../../../framework/calculator_pb';
|
|
import {addJasmineCustomFloatEqualityTester, createSpyWasmModule, MediapipeTasksFake, SpyWasmModule, verifyGraph} from '../../../../tasks/web/core/task_runner_test_utils';
|
|
import {WasmImage} from '../../../../web/graph_runner/graph_runner_image_lib';
|
|
import {MPImage} from '../../../../tasks/web/vision/core/image';
|
|
|
|
import {ImageSegmenter} from './image_segmenter';
|
|
import {ImageSegmenterOptions} from './image_segmenter_options';
|
|
|
|
class ImageSegmenterFake extends ImageSegmenter implements MediapipeTasksFake {
|
|
calculatorName = 'mediapipe.tasks.vision.image_segmenter.ImageSegmenterGraph';
|
|
attachListenerSpies: jasmine.Spy[] = [];
|
|
graph: CalculatorGraphConfig|undefined;
|
|
|
|
fakeWasmModule: SpyWasmModule;
|
|
categoryMaskListener:
|
|
((images: WasmImage, timestamp: number) => void)|undefined;
|
|
confidenceMasksListener:
|
|
((images: WasmImage[], timestamp: number) => void)|undefined;
|
|
|
|
constructor() {
|
|
super(createSpyWasmModule(), /* glCanvas= */ null);
|
|
this.fakeWasmModule =
|
|
this.graphRunner.wasmModule as unknown as SpyWasmModule;
|
|
|
|
this.attachListenerSpies[0] = spyOn(this.graphRunner, 'attachImageListener')
|
|
.and.callFake((stream, listener) => {
|
|
expect(stream).toEqual('category_mask');
|
|
this.categoryMaskListener = listener;
|
|
});
|
|
this.attachListenerSpies[1] =
|
|
spyOn(this.graphRunner, 'attachImageVectorListener')
|
|
.and.callFake((stream, listener) => {
|
|
expect(stream).toEqual('confidence_masks');
|
|
this.confidenceMasksListener = listener;
|
|
});
|
|
spyOn(this.graphRunner, 'setGraph').and.callFake(binaryGraph => {
|
|
this.graph = CalculatorGraphConfig.deserializeBinary(binaryGraph);
|
|
});
|
|
spyOn(this.graphRunner, 'addGpuBufferAsImageToStream');
|
|
}
|
|
}
|
|
|
|
describe('ImageSegmenter', () => {
|
|
let imageSegmenter: ImageSegmenterFake;
|
|
|
|
beforeEach(async () => {
|
|
addJasmineCustomFloatEqualityTester();
|
|
imageSegmenter = new ImageSegmenterFake();
|
|
await imageSegmenter.setOptions(
|
|
{baseOptions: {modelAssetBuffer: new Uint8Array([])}});
|
|
});
|
|
|
|
afterEach(() => {
|
|
imageSegmenter.close();
|
|
});
|
|
|
|
it('initializes graph', async () => {
|
|
verifyGraph(imageSegmenter);
|
|
|
|
// Verify default options
|
|
expect(imageSegmenter.categoryMaskListener).not.toBeDefined();
|
|
expect(imageSegmenter.confidenceMasksListener).toBeDefined();
|
|
});
|
|
|
|
it('reloads graph when settings are changed', async () => {
|
|
await imageSegmenter.setOptions({displayNamesLocale: 'en'});
|
|
verifyGraph(imageSegmenter, ['displayNamesLocale', 'en']);
|
|
|
|
await imageSegmenter.setOptions({displayNamesLocale: 'de'});
|
|
verifyGraph(imageSegmenter, ['displayNamesLocale', 'de']);
|
|
});
|
|
|
|
it('can use custom models', async () => {
|
|
const newModel = new Uint8Array([0, 1, 2, 3, 4]);
|
|
const newModelBase64 = Buffer.from(newModel).toString('base64');
|
|
await imageSegmenter.setOptions({
|
|
baseOptions: {
|
|
modelAssetBuffer: newModel,
|
|
}
|
|
});
|
|
|
|
verifyGraph(
|
|
imageSegmenter,
|
|
/* expectedCalculatorOptions= */ undefined,
|
|
/* expectedBaseOptions= */
|
|
[
|
|
'modelAsset', {
|
|
fileContent: newModelBase64,
|
|
fileName: undefined,
|
|
fileDescriptorMeta: undefined,
|
|
filePointerMeta: undefined
|
|
}
|
|
]);
|
|
});
|
|
|
|
it('merges options', async () => {
|
|
await imageSegmenter.setOptions(
|
|
{baseOptions: {modelAssetBuffer: new Uint8Array([])}});
|
|
await imageSegmenter.setOptions({displayNamesLocale: 'en'});
|
|
verifyGraph(
|
|
imageSegmenter, [['baseOptions', 'modelAsset', 'fileContent'], '']);
|
|
verifyGraph(imageSegmenter, ['displayNamesLocale', 'en']);
|
|
});
|
|
|
|
describe('setOptions()', () => {
|
|
interface TestCase {
|
|
optionName: keyof ImageSegmenterOptions;
|
|
fieldPath: string[];
|
|
userValue: unknown;
|
|
graphValue: unknown;
|
|
defaultValue: unknown;
|
|
}
|
|
|
|
const testCases: TestCase[] = [{
|
|
optionName: 'displayNamesLocale',
|
|
fieldPath: ['displayNamesLocale'],
|
|
userValue: 'en',
|
|
graphValue: 'en',
|
|
defaultValue: 'en'
|
|
}];
|
|
|
|
for (const testCase of testCases) {
|
|
it(`can set ${testCase.optionName}`, async () => {
|
|
await imageSegmenter.setOptions(
|
|
{[testCase.optionName]: testCase.userValue});
|
|
verifyGraph(imageSegmenter, [testCase.fieldPath, testCase.graphValue]);
|
|
});
|
|
|
|
it(`can clear ${testCase.optionName}`, async () => {
|
|
await imageSegmenter.setOptions(
|
|
{[testCase.optionName]: testCase.userValue});
|
|
verifyGraph(imageSegmenter, [testCase.fieldPath, testCase.graphValue]);
|
|
await imageSegmenter.setOptions({[testCase.optionName]: undefined});
|
|
verifyGraph(
|
|
imageSegmenter, [testCase.fieldPath, testCase.defaultValue]);
|
|
});
|
|
}
|
|
});
|
|
|
|
it('doesn\'t support region of interest', () => {
|
|
expect(() => {
|
|
imageSegmenter.segment(
|
|
{} as HTMLImageElement,
|
|
{regionOfInterest: {left: 0, right: 0, top: 0, bottom: 0}}, () => {});
|
|
}).toThrowError('This task doesn\'t support region-of-interest.');
|
|
});
|
|
|
|
it('supports category mask', async () => {
|
|
const mask = new Uint8ClampedArray([1, 2, 3, 4]);
|
|
|
|
await imageSegmenter.setOptions(
|
|
{outputCategoryMask: true, outputConfidenceMasks: false});
|
|
|
|
// Pass the test data to our listener
|
|
imageSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
|
|
expect(imageSegmenter.categoryMaskListener).toBeDefined();
|
|
imageSegmenter.categoryMaskListener!
|
|
({data: mask, width: 2, height: 2},
|
|
/* timestamp= */ 1337);
|
|
});
|
|
|
|
// Invoke the image segmenter
|
|
|
|
return new Promise<void>(resolve => {
|
|
imageSegmenter.segment({} as HTMLImageElement, result => {
|
|
expect(imageSegmenter.fakeWasmModule._waitUntilIdle).toHaveBeenCalled();
|
|
expect(result.categoryMask).toBeInstanceOf(MPImage);
|
|
expect(result.confidenceMasks).not.toBeDefined();
|
|
expect(result.categoryMask!.width).toEqual(2);
|
|
expect(result.categoryMask!.height).toEqual(2);
|
|
resolve();
|
|
});
|
|
});
|
|
});
|
|
|
|
it('supports confidence masks', async () => {
|
|
const mask1 = new Float32Array([0.1, 0.2, 0.3, 0.4]);
|
|
const mask2 = new Float32Array([0.5, 0.6, 0.7, 0.8]);
|
|
|
|
await imageSegmenter.setOptions(
|
|
{outputCategoryMask: false, outputConfidenceMasks: true});
|
|
|
|
// Pass the test data to our listener
|
|
imageSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
|
|
expect(imageSegmenter.confidenceMasksListener).toBeDefined();
|
|
imageSegmenter.confidenceMasksListener!(
|
|
[
|
|
{data: mask1, width: 2, height: 2},
|
|
{data: mask2, width: 2, height: 2},
|
|
],
|
|
1337);
|
|
});
|
|
|
|
return new Promise<void>(resolve => {
|
|
// Invoke the image segmenter
|
|
imageSegmenter.segment({} as HTMLImageElement, result => {
|
|
expect(imageSegmenter.fakeWasmModule._waitUntilIdle).toHaveBeenCalled();
|
|
expect(result.categoryMask).not.toBeDefined();
|
|
|
|
expect(result.confidenceMasks![0]).toBeInstanceOf(MPImage);
|
|
expect(result.confidenceMasks![0].width).toEqual(2);
|
|
expect(result.confidenceMasks![0].height).toEqual(2);
|
|
|
|
expect(result.confidenceMasks![1]).toBeInstanceOf(MPImage);
|
|
resolve();
|
|
});
|
|
});
|
|
});
|
|
|
|
it('supports combined category and confidence masks', async () => {
|
|
const categoryMask = new Uint8ClampedArray([1]);
|
|
const confidenceMask1 = new Float32Array([0.0]);
|
|
const confidenceMask2 = new Float32Array([1.0]);
|
|
|
|
await imageSegmenter.setOptions(
|
|
{outputCategoryMask: true, outputConfidenceMasks: true});
|
|
|
|
// Pass the test data to our listener
|
|
imageSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
|
|
expect(imageSegmenter.categoryMaskListener).toBeDefined();
|
|
expect(imageSegmenter.confidenceMasksListener).toBeDefined();
|
|
imageSegmenter.categoryMaskListener!
|
|
({data: categoryMask, width: 1, height: 1}, 1337);
|
|
imageSegmenter.confidenceMasksListener!(
|
|
[
|
|
{data: confidenceMask1, width: 1, height: 1},
|
|
{data: confidenceMask2, width: 1, height: 1},
|
|
],
|
|
1337);
|
|
});
|
|
|
|
return new Promise<void>(resolve => {
|
|
// Invoke the image segmenter
|
|
imageSegmenter.segment({} as HTMLImageElement, result => {
|
|
expect(imageSegmenter.fakeWasmModule._waitUntilIdle).toHaveBeenCalled();
|
|
expect(result.categoryMask).toBeInstanceOf(MPImage);
|
|
expect(result.categoryMask!.width).toEqual(1);
|
|
expect(result.categoryMask!.height).toEqual(1);
|
|
|
|
expect(result.confidenceMasks![0]).toBeInstanceOf(MPImage);
|
|
expect(result.confidenceMasks![1]).toBeInstanceOf(MPImage);
|
|
resolve();
|
|
});
|
|
});
|
|
});
|
|
|
|
it('invokes listener once masks are available', async () => {
|
|
const categoryMask = new Uint8ClampedArray([1]);
|
|
const confidenceMask = new Float32Array([0.0]);
|
|
let listenerCalled = false;
|
|
|
|
await imageSegmenter.setOptions(
|
|
{outputCategoryMask: true, outputConfidenceMasks: true});
|
|
|
|
// Pass the test data to our listener
|
|
imageSegmenter.fakeWasmModule._waitUntilIdle.and.callFake(() => {
|
|
expect(listenerCalled).toBeFalse();
|
|
imageSegmenter.categoryMaskListener!
|
|
({data: categoryMask, width: 1, height: 1}, 1337);
|
|
expect(listenerCalled).toBeFalse();
|
|
imageSegmenter.confidenceMasksListener!(
|
|
[
|
|
{data: confidenceMask, width: 1, height: 1},
|
|
],
|
|
1337);
|
|
expect(listenerCalled).toBeTrue();
|
|
});
|
|
|
|
return new Promise<void>(resolve => {
|
|
imageSegmenter.segment({} as HTMLImageElement, () => {
|
|
listenerCalled = true;
|
|
resolve();
|
|
});
|
|
});
|
|
});
|
|
});
|