252a5713c7
GitOrigin-RevId: 6f964e58d874e47fb6207aa97d060a4cd6428527
175 lines
5.7 KiB
Plaintext
175 lines
5.7 KiB
Plaintext
# MediaPipe graph that performs object detection with TensorFlow Lite on CPU.
|
|
# Used in the examples in
|
|
# mediapipe/examples/desktop/object_detection:object_detection_cpu.
|
|
|
|
# Images on CPU coming into and out of the graph.
|
|
input_stream: "input_video"
|
|
output_stream: "output_video"
|
|
|
|
# Throttles the images flowing downstream for flow control. It passes through
|
|
# the very first incoming image unaltered, and waits for
|
|
# TfLiteTensorsToDetectionsCalculator downstream in the graph to finish
|
|
# generating the corresponding detections before it passes through another
|
|
# image. All images that come in while waiting are dropped, limiting the number
|
|
# of in-flight images between this calculator and
|
|
# TfLiteTensorsToDetectionsCalculator to 1. This prevents the nodes in between
|
|
# from queuing up incoming images and data excessively, which leads to increased
|
|
# latency and memory usage, unwanted in real-time mobile applications. It also
|
|
# eliminates unnecessarily computation, e.g., a transformed image produced by
|
|
# ImageTransformationCalculator may get dropped downstream if the subsequent
|
|
# TfLiteConverterCalculator or TfLiteInferenceCalculator is still busy
|
|
# processing previous inputs.
|
|
node {
|
|
calculator: "FlowLimiterCalculator"
|
|
input_stream: "input_video"
|
|
input_stream: "FINISHED:detections"
|
|
input_stream_info: {
|
|
tag_index: "FINISHED"
|
|
back_edge: true
|
|
}
|
|
output_stream: "throttled_input_video"
|
|
}
|
|
|
|
# Transforms the input image on CPU to a 320x320 image. To scale the image, by
|
|
# default it uses the STRETCH scale mode that maps the entire input image to the
|
|
# entire transformed image. As a result, image aspect ratio may be changed and
|
|
# objects in the image may be deformed (stretched or squeezed), but the object
|
|
# detection model used in this graph is agnostic to that deformation.
|
|
node: {
|
|
calculator: "ImageTransformationCalculator"
|
|
input_stream: "IMAGE:throttled_input_video"
|
|
output_stream: "IMAGE:transformed_input_video"
|
|
node_options: {
|
|
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
|
|
output_width: 320
|
|
output_height: 320
|
|
}
|
|
}
|
|
}
|
|
|
|
# Converts the transformed input image on CPU into an image tensor stored as a
|
|
# TfLiteTensor.
|
|
node {
|
|
calculator: "TfLiteConverterCalculator"
|
|
input_stream: "IMAGE:transformed_input_video"
|
|
output_stream: "TENSORS:image_tensor"
|
|
}
|
|
|
|
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
|
|
# vector of tensors representing, for instance, detection boxes/keypoints and
|
|
# scores.
|
|
node {
|
|
calculator: "TfLiteInferenceCalculator"
|
|
input_stream: "TENSORS:image_tensor"
|
|
output_stream: "TENSORS:detection_tensors"
|
|
node_options: {
|
|
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
|
|
model_path: "mediapipe/models/ssdlite_object_detection.tflite"
|
|
}
|
|
}
|
|
}
|
|
|
|
# Generates a single side packet containing a vector of SSD anchors based on
|
|
# the specification in the options.
|
|
node {
|
|
calculator: "SsdAnchorsCalculator"
|
|
output_side_packet: "anchors"
|
|
node_options: {
|
|
[type.googleapis.com/mediapipe.SsdAnchorsCalculatorOptions] {
|
|
num_layers: 6
|
|
min_scale: 0.2
|
|
max_scale: 0.95
|
|
input_size_height: 320
|
|
input_size_width: 320
|
|
anchor_offset_x: 0.5
|
|
anchor_offset_y: 0.5
|
|
strides: 16
|
|
strides: 32
|
|
strides: 64
|
|
strides: 128
|
|
strides: 256
|
|
strides: 512
|
|
aspect_ratios: 1.0
|
|
aspect_ratios: 2.0
|
|
aspect_ratios: 0.5
|
|
aspect_ratios: 3.0
|
|
aspect_ratios: 0.3333
|
|
reduce_boxes_in_lowest_layer: true
|
|
}
|
|
}
|
|
}
|
|
|
|
# Decodes the detection tensors generated by the TensorFlow Lite model, based on
|
|
# the SSD anchors and the specification in the options, into a vector of
|
|
# detections. Each detection describes a detected object.
|
|
node {
|
|
calculator: "TfLiteTensorsToDetectionsCalculator"
|
|
input_stream: "TENSORS:detection_tensors"
|
|
input_side_packet: "ANCHORS:anchors"
|
|
output_stream: "DETECTIONS:detections"
|
|
node_options: {
|
|
[type.googleapis.com/mediapipe.TfLiteTensorsToDetectionsCalculatorOptions] {
|
|
num_classes: 91
|
|
num_boxes: 2034
|
|
num_coords: 4
|
|
ignore_classes: 0
|
|
sigmoid_score: true
|
|
apply_exponential_on_box_size: true
|
|
x_scale: 10.0
|
|
y_scale: 10.0
|
|
h_scale: 5.0
|
|
w_scale: 5.0
|
|
min_score_thresh: 0.6
|
|
}
|
|
}
|
|
}
|
|
|
|
# Performs non-max suppression to remove excessive detections.
|
|
node {
|
|
calculator: "NonMaxSuppressionCalculator"
|
|
input_stream: "detections"
|
|
output_stream: "filtered_detections"
|
|
node_options: {
|
|
[type.googleapis.com/mediapipe.NonMaxSuppressionCalculatorOptions] {
|
|
min_suppression_threshold: 0.4
|
|
max_num_detections: 3
|
|
overlap_type: INTERSECTION_OVER_UNION
|
|
return_empty_detections: true
|
|
}
|
|
}
|
|
}
|
|
|
|
# Maps detection label IDs to the corresponding label text. The label map is
|
|
# provided in the label_map_path option.
|
|
node {
|
|
calculator: "DetectionLabelIdToTextCalculator"
|
|
input_stream: "filtered_detections"
|
|
output_stream: "output_detections"
|
|
node_options: {
|
|
[type.googleapis.com/mediapipe.DetectionLabelIdToTextCalculatorOptions] {
|
|
label_map_path: "mediapipe/models/ssdlite_object_detection_labelmap.txt"
|
|
}
|
|
}
|
|
}
|
|
|
|
# Converts the detections to drawing primitives for annotation overlay.
|
|
node {
|
|
calculator: "DetectionsToRenderDataCalculator"
|
|
input_stream: "DETECTIONS:output_detections"
|
|
output_stream: "RENDER_DATA:render_data"
|
|
node_options: {
|
|
[type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] {
|
|
thickness: 4.0
|
|
color { r: 255 g: 0 b: 0 }
|
|
}
|
|
}
|
|
}
|
|
|
|
# Draws annotations and overlays them on top of the input images.
|
|
node {
|
|
calculator: "AnnotationOverlayCalculator"
|
|
input_stream: "IMAGE:throttled_input_video"
|
|
input_stream: "render_data"
|
|
output_stream: "IMAGE:output_video"
|
|
}
|