![MediaPipe](mediapipe/docs/images/mediapipe_small.png?raw=true "MediaPipe logo") ======================================================================= #### We will be [presenting at CVPR 2019](https://sites.google.com/corp/view/perception-cv4arvr/mediapipe) on June 17~20 in Long Beach, CA. Come join us! [MediaPipe](http://g.co/mediapipe) is a framework for building multimodal (eg. video, audio, any time series data) applied ML pipelines. With MediaPipe, a perception pipeline can be built as a graph of modular components, including, for instance, inference models (e.g., TensorFlow, TFLite) and media processing functions. ![Real-time Face Detection](mediapipe/docs/images/realtime_face_detection.gif) ## Installation Follow these [instructions](mediapipe/docs/install.md). ## Getting started See mobile and desktop [examples](mediapipe/docs/examples.md). ## Documentation [MediaPipe Read-the-Docs](https://mediapipe.readthedocs.io/). ## Visualizing MediaPipe graphs A web-based visualizer is hosted on [MediaPipe Visualizer](https://mediapipe-viz.appspot.com/). Please also see instructions [here](mediapipe/docs/visualizer.md). ## Publications * [MediaPipe: A Framework for Building Perception Pipelines](https://tiny.cc/mediapipe_paper) (draft) ## Contributing We welcome contributions. Please follow these [guidelines](./CONTRIBUTING.md). We use GitHub issues for tracking requests and bugs. Please post questions to the MediaPipe Stack Overflow with a 'mediapipe' tag.