syntax = "proto2"; package mediapipe; import "mediapipe/framework/calculator.proto"; // Full Example: // // node { // calculator: "TfLiteConverterCalculator" // input_stream: "IMAGE_IN:input_image" // output_stream: "TENSOR_OUT:image_tensor" // options { // [mediapipe.TfLiteConverterCalculatorOptions.ext] { // zero_center: true // } // } // } // message TfLiteConverterCalculatorOptions { extend mediapipe.CalculatorOptions { optional TfLiteConverterCalculatorOptions ext = 245817797; } // Choose normalization mode for output (not applied for Matrix inputs). // true = [-1,1] // false = [0,1] // Ignored if using quantization. optional bool zero_center = 1 [default = true]; // Custom settings to override the internal scaling factors `div` and `sub`. // Both values must be set to non-negative values. Will only take effect on // CPU AND when |use_custom_normalization| is set to true. When these custom // values take effect, the |zero_center| setting above will be overriden, and // the normalized_value will be calculated as: // normalized_value = input / custom_div - custom_sub. optional bool use_custom_normalization = 6 [default = false]; optional float custom_div = 7 [default = -1.0]; optional float custom_sub = 8 [default = -1.0]; // Whether the input image should be flipped vertically (along the // y-direction). This is useful, for example, when the input image is defined // with a coordinate system where the origin is at the bottom-left corner // (e.g., in OpenGL) whereas the ML model expects an image with a top-left // origin. optional bool flip_vertically = 2 [default = false]; // Controls how many channels of the input image get passed through to the // tensor. Valid values are 1,3,4 only. Ignored for iOS GPU. optional int32 max_num_channels = 3 [default = 3]; // The calculator expects Matrix inputs to be in column-major order. Set // row_major_matrix to true if the inputs are in row-major order. optional bool row_major_matrix = 4 [default = false]; // Quantization option (CPU only). // When true, output kTfLiteUInt8 tensor instead of kTfLiteFloat32. optional bool use_quantized_tensors = 5 [default = false]; // Normalization option. // Setting normalization_range results in the values normalized to // the range [output_tensor_float_range.min, output_tensor_float_range.max]. optional TensorFloatRange output_tensor_float_range = 9; message TensorFloatRange { optional float min = 1; optional float max = 2; } }