# Face Detection (CPU) This doc focuses on the [example graph](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_mobile_cpu.pbtxt) that performs face detection with TensorFlow Lite on CPU. ## Android [Source](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectioncpu) To build and install the app: ```bash bazel build -c opt --config=android_arm64 mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectioncpu adb install bazel-bin/mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectioncpu/facedetectioncpu.apk ``` ## iOS [Source](https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/facedetectioncpu). See the general [instructions](./mediapipe_ios_setup.md) for building iOS examples and generating an Xcode project. This will be the FaceDetectionCpuApp target. To build on the command line: ```bash bazel build -c opt --config=ios_arm64 mediapipe/examples/ios/facedetectioncpu:FaceDetectionCpuApp ``` ## Graph ![face_detection_mobile_cpu_graph](images/mobile/face_detection_mobile_cpu.png) To visualize the graph as shown above, copy the text specification of the graph below and paste it into [MediaPipe Visualizer](https://viz.mediapipe.dev/). [Source pbtxt file](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_mobile_cpu.pbtxt) ```bash # MediaPipe graph that performs face detection with TensorFlow Lite on CPU. # Used in the examples in # mediapipie/examples/android/src/java/com/mediapipe/apps/facedetectioncpu and # mediapipie/examples/ios/facedetectioncpu. # Images on GPU coming into and out of the graph. input_stream: "input_video" output_stream: "output_video" # Throttles the images flowing downstream for flow control. It passes through # the very first incoming image unaltered, and waits for # TfLiteTensorsToDetectionsCalculator downstream in the graph to finish # generating the corresponding detections before it passes through another # image. All images that come in while waiting are dropped, limiting the number # of in-flight images between this calculator and # TfLiteTensorsToDetectionsCalculator to 1. This prevents the nodes in between # from queuing up incoming images and data excessively, which leads to increased # latency and memory usage, unwanted in real-time mobile applications. It also # eliminates unnecessarily computation, e.g., a transformed image produced by # ImageTransformationCalculator may get dropped downstream if the subsequent # TfLiteConverterCalculator or TfLiteInferenceCalculator is still busy # processing previous inputs. node { calculator: "FlowLimiterCalculator" input_stream: "input_video" input_stream: "FINISHED:detections" input_stream_info: { tag_index: "FINISHED" back_edge: true } output_stream: "throttled_input_video" } # Transfers the input image from GPU to CPU memory for the purpose of # demonstrating a CPU-based pipeline. Note that the input image on GPU has the # origin defined at the bottom-left corner (OpenGL convention). As a result, # the transferred image on CPU also shares the same representation. node: { calculator: "GpuBufferToImageFrameCalculator" input_stream: "throttled_input_video" output_stream: "input_video_cpu" } # Transforms the input image on CPU to a 128x128 image. To scale the input # image, the scale_mode option is set to FIT to preserve the aspect ratio, # resulting in potential letterboxing in the transformed image. node: { calculator: "ImageTransformationCalculator" input_stream: "IMAGE:input_video_cpu" output_stream: "IMAGE:transformed_input_video_cpu" output_stream: "LETTERBOX_PADDING:letterbox_padding" node_options: { [type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] { output_width: 128 output_height: 128 scale_mode: FIT } } } # Converts the transformed input image on CPU into an image tensor stored as a # TfLiteTensor. node { calculator: "TfLiteConverterCalculator" input_stream: "IMAGE:transformed_input_video_cpu" output_stream: "TENSORS:image_tensor" } # Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a # vector of tensors representing, for instance, detection boxes/keypoints and # scores. node { calculator: "TfLiteInferenceCalculator" input_stream: "TENSORS:image_tensor" output_stream: "TENSORS:detection_tensors" node_options: { [type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] { model_path: "mediapipe/models/face_detection_front.tflite" } } } # Generates a single side packet containing a vector of SSD anchors based on # the specification in the options. node { calculator: "SsdAnchorsCalculator" output_side_packet: "anchors" node_options: { [type.googleapis.com/mediapipe.SsdAnchorsCalculatorOptions] { num_layers: 4 min_scale: 0.1484375 max_scale: 0.75 input_size_height: 128 input_size_width: 128 anchor_offset_x: 0.5 anchor_offset_y: 0.5 strides: 8 strides: 16 strides: 16 strides: 16 aspect_ratios: 1.0 fixed_anchor_size: true } } } # Decodes the detection tensors generated by the TensorFlow Lite model, based on # the SSD anchors and the specification in the options, into a vector of # detections. Each detection describes a detected object. node { calculator: "TfLiteTensorsToDetectionsCalculator" input_stream: "TENSORS:detection_tensors" input_side_packet: "ANCHORS:anchors" output_stream: "DETECTIONS:detections" node_options: { [type.googleapis.com/mediapipe.TfLiteTensorsToDetectionsCalculatorOptions] { num_classes: 1 num_boxes: 896 num_coords: 16 box_coord_offset: 0 keypoint_coord_offset: 4 num_keypoints: 6 num_values_per_keypoint: 2 sigmoid_score: true score_clipping_thresh: 100.0 reverse_output_order: true x_scale: 128.0 y_scale: 128.0 h_scale: 128.0 w_scale: 128.0 min_score_thresh: 0.75 } } } # Performs non-max suppression to remove excessive detections. node { calculator: "NonMaxSuppressionCalculator" input_stream: "detections" output_stream: "filtered_detections" node_options: { [type.googleapis.com/mediapipe.NonMaxSuppressionCalculatorOptions] { min_suppression_threshold: 0.3 overlap_type: INTERSECTION_OVER_UNION algorithm: WEIGHTED return_empty_detections: true } } } # Maps detection label IDs to the corresponding label text ("Face"). The label # map is provided in the label_map_path option. node { calculator: "DetectionLabelIdToTextCalculator" input_stream: "filtered_detections" output_stream: "labeled_detections" node_options: { [type.googleapis.com/mediapipe.DetectionLabelIdToTextCalculatorOptions] { label_map_path: "mediapipe/models/face_detection_front_labelmap.txt" } } } # Adjusts detection locations (already normalized to [0.f, 1.f]) on the # letterboxed image (after image transformation with the FIT scale mode) to the # corresponding locations on the same image with the letterbox removed (the # input image to the graph before image transformation). node { calculator: "DetectionLetterboxRemovalCalculator" input_stream: "DETECTIONS:labeled_detections" input_stream: "LETTERBOX_PADDING:letterbox_padding" output_stream: "DETECTIONS:output_detections" } # Converts the detections to drawing primitives for annotation overlay. node { calculator: "DetectionsToRenderDataCalculator" input_stream: "DETECTIONS:output_detections" output_stream: "RENDER_DATA:render_data" node_options: { [type.googleapis.com/mediapipe.DetectionsToRenderDataCalculatorOptions] { thickness: 4.0 color { r: 255 g: 0 b: 0 } } } } # Draws annotations and overlays them on top of the input images. node { calculator: "AnnotationOverlayCalculator" input_stream: "IMAGE:input_video_cpu" input_stream: "render_data" output_stream: "IMAGE:output_video_cpu" } # Transfers the annotated image from CPU back to GPU memory, to be sent out of # the graph. node: { calculator: "ImageFrameToGpuBufferCalculator" input_stream: "output_video_cpu" output_stream: "output_video" } ```