# Copyright 2022 The MediaPipe Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MediaPipe image segmenter task.""" import dataclasses import enum from typing import Callable, List, Mapping, Optional from mediapipe.python import packet_creator from mediapipe.python import packet_getter from mediapipe.python._framework_bindings import image as image_module from mediapipe.python._framework_bindings import packet from mediapipe.tasks.cc.components.proto import segmenter_options_pb2 from mediapipe.tasks.cc.vision.image_segmenter.proto import image_segmenter_options_pb2 from mediapipe.tasks.python.core import base_options as base_options_module from mediapipe.tasks.python.core import task_info as task_info_module from mediapipe.tasks.python.core.optional_dependencies import doc_controls from mediapipe.tasks.python.vision.core import base_vision_task_api from mediapipe.tasks.python.vision.core import vision_task_running_mode _BaseOptions = base_options_module.BaseOptions _SegmenterOptionsProto = segmenter_options_pb2.SegmenterOptions _ImageSegmenterOptionsProto = image_segmenter_options_pb2.ImageSegmenterOptions _RunningMode = vision_task_running_mode.VisionTaskRunningMode _TaskInfo = task_info_module.TaskInfo _SEGMENTATION_OUT_STREAM_NAME = 'segmented_mask_out' _SEGMENTATION_TAG = 'GROUPED_SEGMENTATION' _IMAGE_IN_STREAM_NAME = 'image_in' _IMAGE_OUT_STREAM_NAME = 'image_out' _IMAGE_TAG = 'IMAGE' _TASK_GRAPH_NAME = 'mediapipe.tasks.vision.ImageSegmenterGraph' _MICRO_SECONDS_PER_MILLISECOND = 1000 @dataclasses.dataclass class ImageSegmenterOptions: """Options for the image segmenter task. Attributes: base_options: Base options for the image segmenter task. running_mode: The running mode of the task. Default to the image mode. Image segmenter task has three running modes: 1) The image mode for segmenting objects on single image inputs. 2) The video mode for segmenting objects on the decoded frames of a video. 3) The live stream mode for segmenting objects on a live stream of input data, such as from camera. output_type: The output mask type allows specifying the type of post-processing to perform on the raw model results. activation: Activation function to apply to input tensor. result_callback: The user-defined result callback for processing live stream data. The result callback should only be specified when the running mode is set to the live stream mode. """ class OutputType(enum.Enum): UNSPECIFIED = 0 CATEGORY_MASK = 1 CONFIDENCE_MASK = 2 class Activation(enum.Enum): NONE = 0 SIGMOID = 1 SOFTMAX = 2 base_options: _BaseOptions running_mode: _RunningMode = _RunningMode.IMAGE output_type: Optional[OutputType] = OutputType.CATEGORY_MASK activation: Optional[Activation] = Activation.NONE result_callback: Optional[Callable[ [List[image_module.Image], image_module.Image, int], None]] = None @doc_controls.do_not_generate_docs def to_pb2(self) -> _ImageSegmenterOptionsProto: """Generates an ImageSegmenterOptions protobuf object.""" base_options_proto = self.base_options.to_pb2() base_options_proto.use_stream_mode = False if self.running_mode == _RunningMode.IMAGE else True segmenter_options_proto = _SegmenterOptionsProto( output_type=self.output_type.value, activation=self.activation.value) return _ImageSegmenterOptionsProto( base_options=base_options_proto, segmenter_options=segmenter_options_proto) class ImageSegmenter(base_vision_task_api.BaseVisionTaskApi): """Class that performs image segmentation on images.""" @classmethod def create_from_model_path(cls, model_path: str) -> 'ImageSegmenter': """Creates an `ImageSegmenter` object from a TensorFlow Lite model and the default `ImageSegmenterOptions`. Note that the created `ImageSegmenter` instance is in image mode, for performing image segmentation on single image inputs. Args: model_path: Path to the model. Returns: `ImageSegmenter` object that's created from the model file and the default `ImageSegmenterOptions`. Raises: ValueError: If failed to create `ImageSegmenter` object from the provided file such as invalid file path. RuntimeError: If other types of error occurred. """ base_options = _BaseOptions(model_asset_path=model_path) options = ImageSegmenterOptions( base_options=base_options, running_mode=_RunningMode.IMAGE) return cls.create_from_options(options) @classmethod def create_from_options(cls, options: ImageSegmenterOptions) -> 'ImageSegmenter': """Creates the `ImageSegmenter` object from image segmenter options. Args: options: Options for the image segmenter task. Returns: `ImageSegmenter` object that's created from `options`. Raises: ValueError: If failed to create `ImageSegmenter` object from `ImageSegmenterOptions` such as missing the model. RuntimeError: If other types of error occurred. """ def packets_callback(output_packets: Mapping[str, packet.Packet]): if output_packets[_IMAGE_OUT_STREAM_NAME].is_empty(): return segmentation_result = packet_getter.get_image_list( output_packets[_SEGMENTATION_OUT_STREAM_NAME]) image = packet_getter.get_image(output_packets[_IMAGE_OUT_STREAM_NAME]) timestamp = output_packets[_SEGMENTATION_OUT_STREAM_NAME].timestamp options.result_callback(segmentation_result, image, timestamp.value // _MICRO_SECONDS_PER_MILLISECOND) task_info = _TaskInfo( task_graph=_TASK_GRAPH_NAME, input_streams=[':'.join([_IMAGE_TAG, _IMAGE_IN_STREAM_NAME])], output_streams=[ ':'.join([_SEGMENTATION_TAG, _SEGMENTATION_OUT_STREAM_NAME]), ':'.join([_IMAGE_TAG, _IMAGE_OUT_STREAM_NAME]) ], task_options=options) return cls( task_info.generate_graph_config( enable_flow_limiting=options.running_mode == _RunningMode.LIVE_STREAM), options.running_mode, packets_callback if options.result_callback else None) def segment(self, image: image_module.Image) -> List[image_module.Image]: """Performs the actual segmentation task on the provided MediaPipe Image. Args: image: MediaPipe Image. Returns: If the output_type is CATEGORY_MASK, the returned vector of images is per-category segmented image mask. If the output_type is CONFIDENCE_MASK, the returned vector of images contains only one confidence image mask. A segmentation result object that contains a list of segmentation masks as images. Raises: ValueError: If any of the input arguments is invalid. RuntimeError: If image segmentation failed to run. """ output_packets = self._process_image_data( {_IMAGE_IN_STREAM_NAME: packet_creator.create_image(image)}) segmentation_result = packet_getter.get_image_list( output_packets[_SEGMENTATION_OUT_STREAM_NAME]) return segmentation_result def segment_for_video(self, image: image_module.Image, timestamp_ms: int) -> List[image_module.Image]: """Performs segmentation on the provided video frames. Only use this method when the ImageSegmenter is created with the video running mode. It's required to provide the video frame's timestamp (in milliseconds) along with the video frame. The input timestamps should be monotonically increasing for adjacent calls of this method. Args: image: MediaPipe Image. timestamp_ms: The timestamp of the input video frame in milliseconds. Returns: If the output_type is CATEGORY_MASK, the returned vector of images is per-category segmented image mask. If the output_type is CONFIDENCE_MASK, the returned vector of images contains only one confidence image mask. A segmentation result object that contains a list of segmentation masks as images. Raises: ValueError: If any of the input arguments is invalid. RuntimeError: If image segmentation failed to run. """ output_packets = self._process_video_data({ _IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at( timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND) }) segmentation_result = packet_getter.get_image_list( output_packets[_SEGMENTATION_OUT_STREAM_NAME]) return segmentation_result def segment_async(self, image: image_module.Image, timestamp_ms: int) -> None: """Sends live image data (an Image with a unique timestamp) to perform image segmentation. Only use this method when the ImageSegmenter is created with the live stream running mode. The input timestamps should be monotonically increasing for adjacent calls of this method. This method will return immediately after the input image is accepted. The results will be available via the `result_callback` provided in the `ImageSegmenterOptions`. The `segment_async` method is designed to process live stream data such as camera input. To lower the overall latency, image segmenter may drop the input images if needed. In other words, it's not guaranteed to have output per input image. The `result_callback` prvoides: - A segmentation result object that contains a list of segmentation masks as images. - The input image that the image segmenter runs on. - The input timestamp in milliseconds. Args: image: MediaPipe Image. timestamp_ms: The timestamp of the input image in milliseconds. Raises: ValueError: If the current input timestamp is smaller than what the image segmenter has already processed. """ self._send_live_stream_data({ _IMAGE_IN_STREAM_NAME: packet_creator.create_image(image).at( timestamp_ms * _MICRO_SECONDS_PER_MILLISECOND) })