---
layout: default
title: Object Classification
parent: Solutions
nav_order: TODO
---
# MediaPipe Object Classification
{: .no_toc }
1. TOC
{:toc}
---
## Example Apps
Note: To visualize a graph, copy the graph and paste it into
[MediaPipe Visualizer](https://viz.mediapipe.dev/). For more information on how
to visualize its associated subgraphs, please see
[visualizer documentation](../tools/visualizer.md).
### Desktop
#### Live Camera Input
Please first see general instructions for
[desktop](../getting_started/building_examples.md#desktop) on how to build MediaPipe examples.
* Graph:
[`mediapipe/graphs/object_classification/object_classification_desktop_live.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/object_classification/object_classification_desktop_live.pbtxt)
* Target:
[`mediapipe/examples/desktop/object_classification:object_classification_pytorch_cpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/object_classification/BUILD)
#### Video File Input
* With a PyTorch Model
This uses a MobileNetv2 trace model from PyTorch Hub. To fetch and prepare it, run:
```bash
python mediapipe/models/trace_mobilenetv2.py
```
The pipeline is implemented in this
[graph](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/object_classification/object_classification_desktop_live.pbtxt).
To build the application, run:
```bash
bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 mediapipe/examples/desktop/object_classification:object_classification_pytorch_cpu
```
To run the application, replace `` and `