--- layout: default title: Object Detection parent: Solutions nav_order: 9 --- # MediaPipe Object Detection {: .no_toc }
Table of contents {: .text-delta } 1. TOC {:toc}
--- **Attention:** *Thank you for your interest in MediaPipe Solutions. As of March 1, 2023, this solution is planned to be upgraded to a new MediaPipe Solution. For more information, see the new [MediaPipe Solutions](https://developers.google.com/mediapipe/solutions/guide#legacy) site.* *This notice and web page will be removed on April 3, 2023.* ---- ![object_detection_android_gpu.gif](https://mediapipe.dev/images/mobile/object_detection_android_gpu.gif) ## Example Apps Note: To visualize a graph, copy the graph and paste it into [MediaPipe Visualizer](https://viz.mediapipe.dev/). For more information on how to visualize its associated subgraphs, please see [visualizer documentation](../tools/visualizer.md). ### Mobile Please first see general instructions for [Android](../getting_started/android.md) and [iOS](../getting_started/ios.md) on how to build MediaPipe examples. #### GPU Pipeline * Graph: [`mediapipe/graphs/object_detection/object_detection_mobile_gpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/object_detection/object_detection_mobile_gpu.pbtxt) * Android target: [(or download prebuilt ARM64 APK)](https://drive.google.com/open?id=1di2ywCA_acf3y5rIcJHngWHAUNsUHAGz) [`mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu:objectdetectiongpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectiongpu/BUILD) * iOS target: [`mediapipe/examples/ios/objectdetectiongpu:ObjectDetectionGpuApp`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/objectdetectiongpu/BUILD) #### CPU Pipeline This is very similar to the [GPU pipeline](#gpu-pipeline) except that at the beginning and the end of the pipeline it performs GPU-to-CPU and CPU-to-GPU image transfer respectively. As a result, the rest of graph, which shares the same configuration as the GPU pipeline, runs entirely on CPU. * Graph: [`mediapipe/graphs/object_detection/object_detection_mobile_cpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/object_detection/object_detection_mobile_cpu.pbtxt)) * Android target: [(or download prebuilt ARM64 APK)](https://drive.google.com/open?id=1eRBK6V5Qd1LCRwexitR2OXgrBBXbOfZ5) [`mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectioncpu:objectdetectioncpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/objectdetectioncpu/BUILD) * iOS target: [`mediapipe/examples/ios/objectdetectioncpu:ObjectDetectionCpuApp`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/objectdetectioncpu/BUILD) ### Desktop #### Live Camera Input Please first see general instructions for [desktop](../getting_started/cpp.md) on how to build MediaPipe examples. * Graph: [`mediapipe/graphs/object_detection/object_detection_desktop_live.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/object_detection/object_detection_desktop_live.pbtxt) * Target: [`mediapipe/examples/desktop/object_detection:object_detection_cpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/object_detection/BUILD) #### Video File Input * With a TFLite Model This uses the same [TFLite model](https://storage.googleapis.com/mediapipe-assets/ssdlite_object_detection.tflite) (see also [model info](https://github.com/google/mediapipe/tree/master/mediapipe/models/object_detection_saved_model/README.md)) as in [Live Camera Input](#live-camera-input) above. The pipeline is implemented in this [graph](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/object_detection/object_detection_desktop_tflite_graph.pbtxt), which differs from the live-camera-input CPU-based pipeline [graph](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/object_detection/object_detection_mobile_cpu.pbtxt) simply by the additional `OpenCvVideoDecoderCalculator` and `OpenCvVideoEncoderCalculator` at the beginning and the end of the graph respectively. To build the application, run: ```bash bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 mediapipe/examples/desktop/object_detection:object_detection_tflite ``` To run the application, replace `` and `` in the command below with your own paths: Tip: You can find a test video available in `mediapipe/examples/desktop/object_detection`. ``` GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/object_detection/object_detection_tflite \ --calculator_graph_config_file=mediapipe/graphs/object_detection/object_detection_desktop_tflite_graph.pbtxt \ --input_side_packets=input_video_path=,output_video_path= ``` * With a TensorFlow Model This uses the [TensorFlow model](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/object_detection) ( see also [model info](https://github.com/google/mediapipe/tree/master/mediapipe/modules/objectron)), and the pipeline is implemented in this [graph](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/object_detection/object_detection_mobile_cpu.pbtxt). Note: The following runs TensorFlow inference on CPU. If you would like to run inference on GPU (Linux only), please follow [TensorFlow CUDA Support and Setup on Linux Desktop](../getting_started/gpu_support.md#tensorflow-cuda-support-and-setup-on-linux-desktop) instead. To build the TensorFlow CPU inference example on desktop, run: Note: This command also builds TensorFlow targets from scratch, and it may take a long time (e.g., up to 30 mins) for the first time. ```bash bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 --define no_aws_support=true --linkopt=-s \ mediapipe/examples/desktop/object_detection:object_detection_tensorflow ``` To run the application, replace `` and `` in the command below with your own paths: Tip: You can find a test video available in `mediapipe/examples/desktop/object_detection`. ```bash GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/object_detection/object_detection_tflite \ --calculator_graph_config_file=mediapipe/graphs/object_detection/object_detection_desktop_tensorflow_graph.pbtxt \ --input_side_packets=input_video_path=,output_video_path= ``` ### Coral Please refer to [these instructions](https://github.com/google/mediapipe/tree/master/mediapipe/examples/coral/README.md) to cross-compile and run MediaPipe examples on the [Coral Dev Board](https://coral.ai/products/dev-board). ## Resources * [Models and model cards](./models.md#object_detection)