--- layout: forward target: https://developers.google.com/mediapipe/solutions/vision/face_detector/ title: Face Detection parent: MediaPipe Legacy Solutions nav_order: 1 --- # MediaPipe Face Detection {: .no_toc } <details close markdown="block"> <summary> Table of contents </summary> {: .text-delta } 1. TOC {:toc} </details> --- **Attention:** *Thank you for your interest in MediaPipe Solutions. As of March 1, 2023, this solution is planned to be upgraded to a new MediaPipe Solution. For more information, see the [MediaPipe Solutions](https://developers.google.com/mediapipe/solutions/guide#legacy) site.* ---- ## Overview MediaPipe Face Detection is an ultrafast face detection solution that comes with 6 landmarks and multi-face support. It is based on [BlazeFace](https://arxiv.org/abs/1907.05047), a lightweight and well-performing face detector tailored for mobile GPU inference. The detector's super-realtime performance enables it to be applied to any live viewfinder experience that requires an accurate facial region of interest as an input for other task-specific models, such as 3D facial keypoint estimation (e.g., [MediaPipe Face Mesh](./face_mesh.md)), facial features or expression classification, and face region segmentation. BlazeFace uses a lightweight feature extraction network inspired by, but distinct from [MobileNetV1/V2](https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html), a GPU-friendly anchor scheme modified from [Single Shot MultiBox Detector (SSD)](https://arxiv.org/abs/1512.02325), and an improved tie resolution strategy alternative to non-maximum suppression. For more information about BlazeFace, please see the [Resources](#resources) section. ![face_detection_android_gpu.gif](https://mediapipe.dev/images/mobile/face_detection_android_gpu.gif) ## Solution APIs ### Configuration Options Naming style and availability may differ slightly across platforms/languages. #### model_selection An integer index `0` or `1`. Use `0` to select a short-range model that works best for faces within 2 meters from the camera, and `1` for a full-range model best for faces within 5 meters. For the full-range option, a sparse model is used for its improved inference speed. Please refer to the [model cards](./models.md#face_detection) for details. Default to `0` if not specified. Note: Not available for JavaScript (use "model" instead). #### model A string value to indicate which model should be used. Use "short" to select a short-range model that works best for faces within 2 meters from the camera, and "full" for a full-range model best for faces within 5 meters. For the full-range option, a sparse model is used for its improved inference speed. Please refer to the model cards for details. Default to empty string. Note: Valid only for JavaScript solution. #### selfie_mode A boolean value to indicate whether to flip the images/video frames horizontally or not. Default to `false`. Note: Valid only for JavaScript solution. #### min_detection_confidence Minimum confidence value (`[0.0, 1.0]`) from the face detection model for the detection to be considered successful. Default to `0.5`. ### Output Naming style may differ slightly across platforms/languages. #### detections Collection of detected faces, where each face is represented as a detection proto message that contains a bounding box and 6 key points (right eye, left eye, nose tip, mouth center, right ear tragion, and left ear tragion). The bounding box is composed of `xmin` and `width` (both normalized to `[0.0, 1.0]` by the image width) and `ymin` and `height` (both normalized to `[0.0, 1.0]` by the image height). Each key point is composed of `x` and `y`, which are normalized to `[0.0, 1.0]` by the image width and height respectively. ### Python Solution API Please first follow general [instructions](../getting_started/python.md) to install MediaPipe Python package, then learn more in the companion [Python Colab](#resources) and the usage example below. Supported configuration options: * [model_selection](#model_selection) * [min_detection_confidence](#min_detection_confidence) ```python import cv2 import mediapipe as mp mp_face_detection = mp.solutions.face_detection mp_drawing = mp.solutions.drawing_utils # For static images: IMAGE_FILES = [] with mp_face_detection.FaceDetection( model_selection=1, min_detection_confidence=0.5) as face_detection: for idx, file in enumerate(IMAGE_FILES): image = cv2.imread(file) # Convert the BGR image to RGB and process it with MediaPipe Face Detection. results = face_detection.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) # Draw face detections of each face. if not results.detections: continue annotated_image = image.copy() for detection in results.detections: print('Nose tip:') print(mp_face_detection.get_key_point( detection, mp_face_detection.FaceKeyPoint.NOSE_TIP)) mp_drawing.draw_detection(annotated_image, detection) cv2.imwrite('/tmp/annotated_image' + str(idx) + '.png', annotated_image) # For webcam input: cap = cv2.VideoCapture(0) with mp_face_detection.FaceDetection( model_selection=0, min_detection_confidence=0.5) as face_detection: while cap.isOpened(): success, image = cap.read() if not success: print("Ignoring empty camera frame.") # If loading a video, use 'break' instead of 'continue'. continue # To improve performance, optionally mark the image as not writeable to # pass by reference. image.flags.writeable = False image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) results = face_detection.process(image) # Draw the face detection annotations on the image. image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if results.detections: for detection in results.detections: mp_drawing.draw_detection(image, detection) # Flip the image horizontally for a selfie-view display. cv2.imshow('MediaPipe Face Detection', cv2.flip(image, 1)) if cv2.waitKey(5) & 0xFF == 27: break cap.release() ``` ### JavaScript Solution API Please first see general [introduction](../getting_started/javascript.md) on MediaPipe in JavaScript, then learn more in the companion [web demo](#resources) and the following usage example. Supported face detection options: * [selfieMode](#selfie_mode) * [model](#model) * [minDetectionConfidence](#min_detection_confidence) ```html <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script src="https://cdn.jsdelivr.net/npm/@mediapipe/camera_utils/camera_utils.js" crossorigin="anonymous"></script> <script src="https://cdn.jsdelivr.net/npm/@mediapipe/control_utils/control_utils.js" crossorigin="anonymous"></script> <script src="https://cdn.jsdelivr.net/npm/@mediapipe/drawing_utils/drawing_utils.js" crossorigin="anonymous"></script> <script src="https://cdn.jsdelivr.net/npm/@mediapipe/face_detection/face_detection.js" crossorigin="anonymous"></script> </head> <body> <div class="container"> <video class="input_video"></video> <canvas class="output_canvas" width="1280px" height="720px"></canvas> </div> </body> </html> ``` ```javascript <script type="module"> const videoElement = document.getElementsByClassName('input_video')[0]; const canvasElement = document.getElementsByClassName('output_canvas')[0]; const canvasCtx = canvasElement.getContext('2d'); const drawingUtils = window; function onResults(results) { // Draw the overlays. canvasCtx.save(); canvasCtx.clearRect(0, 0, canvasElement.width, canvasElement.height); canvasCtx.drawImage( results.image, 0, 0, canvasElement.width, canvasElement.height); if (results.detections.length > 0) { drawingUtils.drawRectangle( canvasCtx, results.detections[0].boundingBox, {color: 'blue', lineWidth: 4, fillColor: '#00000000'}); drawingUtils.drawLandmarks(canvasCtx, results.detections[0].landmarks, { color: 'red', radius: 5, }); } canvasCtx.restore(); } const faceDetection = new FaceDetection({locateFile: (file) => { return `https://cdn.jsdelivr.net/npm/@mediapipe/face_detection@0.0/${file}`; }}); faceDetection.setOptions({ model: 'short', minDetectionConfidence: 0.5 }); faceDetection.onResults(onResults); const camera = new Camera(videoElement, { onFrame: async () => { await faceDetection.send({image: videoElement}); }, width: 1280, height: 720 }); camera.start(); </script> ``` ### Android Solution API Please first follow general [instructions](../getting_started/android_solutions.md) to add MediaPipe Gradle dependencies and try the Android Solution API in the companion [example Android Studio project](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/solutions/facedetection), and learn more in the usage example below. Supported configuration options: * [staticImageMode](#static_image_mode) * [modelSelection](#model_selection) #### Camera Input ```java // For camera input and result rendering with OpenGL. FaceDetectionOptions faceDetectionOptions = FaceDetectionOptions.builder() .setStaticImageMode(false) .setModelSelection(0).build(); FaceDetection faceDetection = new FaceDetection(this, faceDetectionOptions); faceDetection.setErrorListener( (message, e) -> Log.e(TAG, "MediaPipe Face Detection error:" + message)); // Initializes a new CameraInput instance and connects it to MediaPipe Face Detection Solution. CameraInput cameraInput = new CameraInput(this); cameraInput.setNewFrameListener( textureFrame -> faceDetection.send(textureFrame)); // Initializes a new GlSurfaceView with a ResultGlRenderer<FaceDetectionResult> instance // that provides the interfaces to run user-defined OpenGL rendering code. // See mediapipe/examples/android/solutions/facedetection/src/main/java/com/google/mediapipe/examples/facedetection/FaceDetectionResultGlRenderer.java // as an example. SolutionGlSurfaceView<FaceDetectionResult> glSurfaceView = new SolutionGlSurfaceView<>( this, faceDetection.getGlContext(), faceDetection.getGlMajorVersion()); glSurfaceView.setSolutionResultRenderer(new FaceDetectionResultGlRenderer()); glSurfaceView.setRenderInputImage(true); faceDetection.setResultListener( faceDetectionResult -> { if (faceDetectionResult.multiFaceDetections().isEmpty()) { return; } RelativeKeypoint noseTip = faceDetectionResult .multiFaceDetections() .get(0) .getLocationData() .getRelativeKeypoints(FaceKeypoint.NOSE_TIP); Log.i( TAG, String.format( "MediaPipe Face Detection nose tip normalized coordinates (value range: [0, 1]): x=%f, y=%f", noseTip.getX(), noseTip.getY())); // Request GL rendering. glSurfaceView.setRenderData(faceDetectionResult); glSurfaceView.requestRender(); }); // The runnable to start camera after the GLSurfaceView is attached. glSurfaceView.post( () -> cameraInput.start( this, faceDetection.getGlContext(), CameraInput.CameraFacing.FRONT, glSurfaceView.getWidth(), glSurfaceView.getHeight())); ``` #### Image Input ```java // For reading images from gallery and drawing the output in an ImageView. FaceDetectionOptions faceDetectionOptions = FaceDetectionOptions.builder() .setStaticImageMode(true) .setModelSelection(0).build(); FaceDetection faceDetection = new FaceDetection(this, faceDetectionOptions); // Connects MediaPipe Face Detection Solution to the user-defined ImageView // instance that allows users to have the custom drawing of the output landmarks // on it. See mediapipe/examples/android/solutions/facedetection/src/main/java/com/google/mediapipe/examples/facedetection/FaceDetectionResultImageView.java // as an example. FaceDetectionResultImageView imageView = new FaceDetectionResultImageView(this); faceDetection.setResultListener( faceDetectionResult -> { if (faceDetectionResult.multiFaceDetections().isEmpty()) { return; } int width = faceDetectionResult.inputBitmap().getWidth(); int height = faceDetectionResult.inputBitmap().getHeight(); RelativeKeypoint noseTip = faceDetectionResult .multiFaceDetections() .get(0) .getLocationData() .getRelativeKeypoints(FaceKeypoint.NOSE_TIP); Log.i( TAG, String.format( "MediaPipe Face Detection nose tip coordinates (pixel values): x=%f, y=%f", noseTip.getX() * width, noseTip.getY() * height)); // Request canvas drawing. imageView.setFaceDetectionResult(faceDetectionResult); runOnUiThread(() -> imageView.update()); }); faceDetection.setErrorListener( (message, e) -> Log.e(TAG, "MediaPipe Face Detection error:" + message)); // ActivityResultLauncher to get an image from the gallery as Bitmap. ActivityResultLauncher<Intent> imageGetter = registerForActivityResult( new ActivityResultContracts.StartActivityForResult(), result -> { Intent resultIntent = result.getData(); if (resultIntent != null && result.getResultCode() == RESULT_OK) { Bitmap bitmap = null; try { bitmap = MediaStore.Images.Media.getBitmap( this.getContentResolver(), resultIntent.getData()); // Please also rotate the Bitmap based on its orientation. } catch (IOException e) { Log.e(TAG, "Bitmap reading error:" + e); } if (bitmap != null) { faceDetection.send(bitmap); } } }); Intent pickImageIntent = new Intent(Intent.ACTION_PICK); pickImageIntent.setDataAndType(MediaStore.Images.Media.INTERNAL_CONTENT_URI, "image/*"); imageGetter.launch(pickImageIntent); ``` #### Video Input ```java // For video input and result rendering with OpenGL. FaceDetectionOptions faceDetectionOptions = FaceDetectionOptions.builder() .setStaticImageMode(false) .setModelSelection(0).build(); FaceDetection faceDetection = new FaceDetection(this, faceDetectionOptions); faceDetection.setErrorListener( (message, e) -> Log.e(TAG, "MediaPipe Face Detection error:" + message)); // Initializes a new VideoInput instance and connects it to MediaPipe Face Detection Solution. VideoInput videoInput = new VideoInput(this); videoInput.setNewFrameListener( textureFrame -> faceDetection.send(textureFrame)); // Initializes a new GlSurfaceView with a ResultGlRenderer<FaceDetectionResult> instance // that provides the interfaces to run user-defined OpenGL rendering code. // See mediapipe/examples/android/solutions/facedetection/src/main/java/com/google/mediapipe/examples/facedetection/FaceDetectionResultGlRenderer.java // as an example. SolutionGlSurfaceView<FaceDetectionResult> glSurfaceView = new SolutionGlSurfaceView<>( this, faceDetection.getGlContext(), faceDetection.getGlMajorVersion()); glSurfaceView.setSolutionResultRenderer(new FaceDetectionResultGlRenderer()); glSurfaceView.setRenderInputImage(true); faceDetection.setResultListener( faceDetectionResult -> { if (faceDetectionResult.multiFaceDetections().isEmpty()) { return; } RelativeKeypoint noseTip = faceDetectionResult .multiFaceDetections() .get(0) .getLocationData() .getRelativeKeypoints(FaceKeypoint.NOSE_TIP); Log.i( TAG, String.format( "MediaPipe Face Detection nose tip normalized coordinates (value range: [0, 1]): x=%f, y=%f", noseTip.getX(), noseTip.getY())); // Request GL rendering. glSurfaceView.setRenderData(faceDetectionResult); glSurfaceView.requestRender(); }); ActivityResultLauncher<Intent> videoGetter = registerForActivityResult( new ActivityResultContracts.StartActivityForResult(), result -> { Intent resultIntent = result.getData(); if (resultIntent != null) { if (result.getResultCode() == RESULT_OK) { glSurfaceView.post( () -> videoInput.start( this, resultIntent.getData(), faceDetection.getGlContext(), glSurfaceView.getWidth(), glSurfaceView.getHeight())); } } }); Intent pickVideoIntent = new Intent(Intent.ACTION_PICK); pickVideoIntent.setDataAndType(MediaStore.Video.Media.INTERNAL_CONTENT_URI, "video/*"); videoGetter.launch(pickVideoIntent); ``` ## Example Apps Please first see general instructions for [Android](../getting_started/android.md), [iOS](../getting_started/ios.md) and [desktop](../getting_started/cpp.md) on how to build MediaPipe examples. Note: To visualize a graph, copy the graph and paste it into [MediaPipe Visualizer](https://viz.mediapipe.dev/). For more information on how to visualize its associated subgraphs, please see [visualizer documentation](../tools/visualizer.md). ### Mobile #### GPU Pipeline * Graph: [`mediapipe/graphs/face_detection/face_detection_mobile_gpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_mobile_gpu.pbtxt) * Android target: [(or download prebuilt ARM64 APK)](https://drive.google.com/open?id=1DZTCy1gp238kkMnu4fUkwI3IrF77Mhy5) [`mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectiongpu:facedetectiongpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectiongpu/BUILD) * iOS target: [`mediapipe/examples/ios/facedetectiongpu:FaceDetectionGpuApp`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/facedetectiongpu/BUILD) #### CPU Pipeline This is very similar to the [GPU pipeline](#gpu-pipeline) except that at the beginning and the end of the pipeline it performs GPU-to-CPU and CPU-to-GPU image transfer respectively. As a result, the rest of graph, which shares the same configuration as the GPU pipeline, runs entirely on CPU. * Graph: [`mediapipe/graphs/face_detection/face_detection_mobile_cpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_mobile_cpu.pbtxt) * Android target: [(or download prebuilt ARM64 APK)](https://drive.google.com/open?id=1npiZY47jbO5m2YaL63o5QoCQs40JC6C7) [`mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectioncpu:facedetectioncpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/android/src/java/com/google/mediapipe/apps/facedetectioncpu/BUILD) * iOS target: [`mediapipe/examples/ios/facedetectioncpu:FaceDetectionCpuApp`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/ios/facedetectioncpu/BUILD) ### Desktop * Running on CPU: * Graph: [`mediapipe/graphs/face_detection/face_detection_desktop_live.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_desktop_live.pbtxt) * Target: [`mediapipe/examples/desktop/face_detection:face_detection_cpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/face_detection/BUILD) * Running on GPU * Graph: [`mediapipe/graphs/face_detection/face_detection_mobile_gpu.pbtxt`](https://github.com/google/mediapipe/tree/master/mediapipe/graphs/face_detection/face_detection_mobile_gpu.pbtxt) * Target: [`mediapipe/examples/desktop/face_detection:face_detection_gpu`](https://github.com/google/mediapipe/tree/master/mediapipe/examples/desktop/face_detection/BUILD) ### Coral Please refer to [these instructions](https://github.com/google/mediapipe/tree/master/mediapipe/examples/coral/README.md) to cross-compile and run MediaPipe examples on the [Coral Dev Board](https://coral.ai/products/dev-board). ## Resources * Paper: [BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs](https://arxiv.org/abs/1907.05047) ([presentation](https://docs.google.com/presentation/d/1YCtASfnYyZtH-41QvnW5iZxELFnf0MF-pPWSLGj8yjQ/present?slide=id.g5bc8aeffdd_1_0)) ([poster](https://drive.google.com/file/d/1u6aB6wxDY7X2TmeUUKgFydulNtXkb3pu/view)) * [Models and model cards](./models.md#face_detection) * [Web demo](https://code.mediapipe.dev/codepen/face_detection) * [Python Colab](https://mediapipe.page.link/face_detection_py_colab)