--- layout: forward target: https://developers.google.com/mediapipe/solutions/guide#legacy title: AutoFlip (Saliency-aware Video Cropping) parent: Solutions nav_order: 14 --- # AutoFlip: Saliency-aware Video Cropping {: .no_toc }
Table of contents {: .text-delta } 1. TOC {:toc}
--- **Attention:** *Thank you for your interest in MediaPipe Solutions. We have ended support for this MediaPipe Legacy Solution as of March 1, 2023. For more information, see the [MediaPipe Solutions](https://developers.google.com/mediapipe/solutions/guide#legacy) site.* ---- ## Overview AutoFlip is an automatic video cropping pipeline built on top of MediaPipe. This example focuses on demonstrating how to use AutoFlip to convert an input video to arbitrary aspect ratios. For overall context on AutoFlip, please read this [Google AI Blog](https://ai.googleblog.com/2020/02/autoflip-open-source-framework-for.html). ![graph is_required](https://mediapipe.dev/images/autoflip_edited_example.gif) ## Building Run the following command to build the AutoFlip pipeline: Note: AutoFlip currently only works with OpenCV 3. Please verify your OpenCV version beforehand. ```bash bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 mediapipe/examples/desktop/autoflip:run_autoflip ``` ## Running ```bash GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/autoflip/run_autoflip \ --calculator_graph_config_file=mediapipe/examples/desktop/autoflip/autoflip_graph.pbtxt \ --input_side_packets=input_video_path=/absolute/path/to/the/local/video/file,output_video_path=/absolute/path/to/save/the/output/video/file,aspect_ratio=1:1 ``` Use the `aspect_ratio` flag to provide the output aspect ratio. The format should be `width:height`, where the `width` and `height` are two positive integers. AutoFlip supports both landscape-to-portrait and portrait-to-landscape conversions. The pipeline internally compares the target aspect ratio against the original one, and determines the correct conversion automatically. We have put a couple test videos under this [Google Drive folder](https://drive.google.com/corp/drive/u/0/folders/1KK9LV--Ey0UEVpxssVLhVl7dypgJSQgk). You could download the videos into your local file system, then modify the command above accordingly to run AutoFlip against the videos. ## MediaPipe Graph ![graph visualization](https://mediapipe.dev/images/autoflip_graph.png) To visualize the graph as shown above, copy the text specification of the graph below and paste it into [MediaPipe Visualizer](https://viz.mediapipe.dev). ```bash # Autoflip graph that only renders the final cropped video. For use with # end user applications. max_queue_size: -1 # VIDEO_PREP: Decodes an input video file into images and a video header. node { calculator: "OpenCvVideoDecoderCalculator" input_side_packet: "INPUT_FILE_PATH:input_video_path" output_stream: "VIDEO:video_raw" output_stream: "VIDEO_PRESTREAM:video_header" output_side_packet: "SAVED_AUDIO_PATH:audio_path" } # VIDEO_PREP: Scale the input video before feature extraction. node { calculator: "ScaleImageCalculator" input_stream: "FRAMES:video_raw" input_stream: "VIDEO_HEADER:video_header" output_stream: "FRAMES:video_frames_scaled" node_options: { [type.googleapis.com/mediapipe.ScaleImageCalculatorOptions]: { preserve_aspect_ratio: true output_format: SRGB target_width: 480 algorithm: DEFAULT_WITHOUT_UPSCALE } } } # VIDEO_PREP: Create a low frame rate stream for feature extraction. node { calculator: "PacketThinnerCalculator" input_stream: "video_frames_scaled" output_stream: "video_frames_scaled_downsampled" node_options: { [type.googleapis.com/mediapipe.PacketThinnerCalculatorOptions]: { thinner_type: ASYNC period: 200000 } } } # DETECTION: find borders around the video and major background color. node { calculator: "BorderDetectionCalculator" input_stream: "VIDEO:video_raw" output_stream: "DETECTED_BORDERS:borders" } # DETECTION: find shot/scene boundaries on the full frame rate stream. node { calculator: "ShotBoundaryCalculator" input_stream: "VIDEO:video_frames_scaled" output_stream: "IS_SHOT_CHANGE:shot_change" options { [type.googleapis.com/mediapipe.autoflip.ShotBoundaryCalculatorOptions] { min_shot_span: 0.2 min_motion: 0.3 window_size: 15 min_shot_measure: 10 min_motion_with_shot_measure: 0.05 } } } # DETECTION: find faces on the down sampled stream node { calculator: "AutoFlipFaceDetectionSubgraph" input_stream: "VIDEO:video_frames_scaled_downsampled" output_stream: "DETECTIONS:face_detections" } node { calculator: "FaceToRegionCalculator" input_stream: "VIDEO:video_frames_scaled_downsampled" input_stream: "FACES:face_detections" output_stream: "REGIONS:face_regions" } # DETECTION: find objects on the down sampled stream node { calculator: "AutoFlipObjectDetectionSubgraph" input_stream: "VIDEO:video_frames_scaled_downsampled" output_stream: "DETECTIONS:object_detections" } node { calculator: "LocalizationToRegionCalculator" input_stream: "DETECTIONS:object_detections" output_stream: "REGIONS:object_regions" options { [type.googleapis.com/mediapipe.autoflip.LocalizationToRegionCalculatorOptions] { output_all_signals: true } } } # SIGNAL FUSION: Combine detections (with weights) on each frame node { calculator: "SignalFusingCalculator" input_stream: "shot_change" input_stream: "face_regions" input_stream: "object_regions" output_stream: "salient_regions" options { [type.googleapis.com/mediapipe.autoflip.SignalFusingCalculatorOptions] { signal_settings { type { standard: FACE_CORE_LANDMARKS } min_score: 0.85 max_score: 0.9 is_required: false } signal_settings { type { standard: FACE_ALL_LANDMARKS } min_score: 0.8 max_score: 0.85 is_required: false } signal_settings { type { standard: FACE_FULL } min_score: 0.8 max_score: 0.85 is_required: false } signal_settings { type: { standard: HUMAN } min_score: 0.75 max_score: 0.8 is_required: false } signal_settings { type: { standard: PET } min_score: 0.7 max_score: 0.75 is_required: false } signal_settings { type: { standard: CAR } min_score: 0.7 max_score: 0.75 is_required: false } signal_settings { type: { standard: OBJECT } min_score: 0.1 max_score: 0.2 is_required: false } } } } # CROPPING: make decisions about how to crop each frame. node { calculator: "SceneCroppingCalculator" input_side_packet: "EXTERNAL_ASPECT_RATIO:aspect_ratio" input_stream: "VIDEO_FRAMES:video_raw" input_stream: "KEY_FRAMES:video_frames_scaled_downsampled" input_stream: "DETECTION_FEATURES:salient_regions" input_stream: "STATIC_FEATURES:borders" input_stream: "SHOT_BOUNDARIES:shot_change" output_stream: "CROPPED_FRAMES:cropped_frames" node_options: { [type.googleapis.com/mediapipe.autoflip.SceneCroppingCalculatorOptions]: { max_scene_size: 600 key_frame_crop_options: { score_aggregation_type: CONSTANT } scene_camera_motion_analyzer_options: { motion_stabilization_threshold_percent: 0.5 salient_point_bound: 0.499 } padding_parameters: { blur_cv_size: 200 overlay_opacity: 0.6 } target_size_type: MAXIMIZE_TARGET_DIMENSION } } } # ENCODING(required): encode the video stream for the final cropped output. node { calculator: "VideoPreStreamCalculator" # Fetch frame format and dimension from input frames. input_stream: "FRAME:cropped_frames" # Copying frame rate and duration from original video. input_stream: "VIDEO_PRESTREAM:video_header" output_stream: "output_frames_video_header" } node { calculator: "OpenCvVideoEncoderCalculator" input_stream: "VIDEO:cropped_frames" input_stream: "VIDEO_PRESTREAM:output_frames_video_header" input_side_packet: "OUTPUT_FILE_PATH:output_video_path" input_side_packet: "AUDIO_FILE_PATH:audio_path" node_options: { [type.googleapis.com/mediapipe.OpenCvVideoEncoderCalculatorOptions]: { codec: "avc1" video_format: "mp4" } } } ``` ## Advanced Parameters ### Required vs. Best-Effort Saliency Features AutoFlip allows users to implement and specify custom features to be used in the camera trajectory computation. If the user would like to detect and preserve scenes of lions in a wildlife protection video, for example, they could implement and add a feature detection calculator for lions into the pipeline. Refer to `AutoFlipFaceDetectionSubgraph` and `FaceToRegionCalculator`, or `AutoFlipObjectDetectionSubgraph` and `LocalizationToRegionCalculator` for examples of how to create new feature detection calculators. After adding different feature signals into the graph, use the `SignalFusingCalculator` node to specify types and weights for different feature signals. For example, in the graph above, we specified a `face_region` and an `object_region` input streams, to represent face signals and agnostic object signals, respectively. The larger the weight, the more important the features will be considered when AutoFlip computes the camera trajectory. Use the `is_required` flag to mark a feature as a hard constraint, in which case the computed camera trajectory will try best to cover these feature types in the cropped videos. If for some reason the required features cannot be all covered (for example, when they are too spread out in the video), AutoFlip will apply a padding effect to cover as much salient content as possible. See an illustration below. ![graph is_required](https://mediapipe.dev/images/autoflip_is_required.gif) ### Stable vs Tracking Camera Motion AutoFlip makes a decision on each scene whether to have the cropped viewpoint follow an object or if the crop should remain stable (centered on detected objects). The parameter `motion_stabilization_threshold_percent` value is used to make the decision to track action or keep the camera stable. If, over the duration of the scene, all detected focus objects remain within this ratio of the frame (e.g. 0.5 = 50% or 1920 * .5 = 960 pixels on 1080p video) then the camera is held steady. Otherwise the camera tracks activity within the frame. ### Snap To Center For some scenes the camera viewpoint will remain stable at the center of activity (see `motion_stabilization_threshold_percent` setting). In this case, if the determined best stable viewpoint is within `snap_center_max_distance_percent` of the frame's center the camera will be shifted to be locked to the center of the frame. This setting is useful for videos where the camera operator did a good job already centering content or if titles and logos are expected to appear in the center of the frame. It may be less useful on raw content where objects are not already well positioned on screen. ### Visualization to Facilitate Debugging `SceneCroppingCalculator` provides two extra output streams `KEY_FRAME_CROP_REGION_VIZ_FRAMES` and `SALIENT_POINT_FRAME_VIZ_FRAMES` to visualize the cropping window as well as salient points detected on each frame. You could modify the `SceneCroppingCalculator` node like below to enable these two output streams. ```bash node { calculator: "SceneCroppingCalculator" input_side_packet: "EXTERNAL_ASPECT_RATIO:aspect_ratio" input_stream: "VIDEO_FRAMES:video_raw" input_stream: "KEY_FRAMES:video_frames_scaled_downsampled" input_stream: "DETECTION_FEATURES:salient_regions" input_stream: "STATIC_FEATURES:borders" input_stream: "SHOT_BOUNDARIES:shot_change" output_stream: "CROPPED_FRAMES:cropped_frames" output_stream: "KEY_FRAME_CROP_REGION_VIZ_FRAMES:key_frame_crop_viz_frames" output_stream: "SALIENT_POINT_FRAME_VIZ_FRAMES:salient_point_viz_frames" node_options: { [type.googleapis.com/mediapipe.autoflip.SceneCroppingCalculatorOptions]: { max_scene_size: 600 key_frame_crop_options: { score_aggregation_type: CONSTANT } scene_camera_motion_analyzer_options: { motion_stabilization_threshold_percent: 0.5 salient_point_bound: 0.499 } padding_parameters: { blur_cv_size: 200 overlay_opacity: 0.6 } target_size_type: MAXIMIZE_TARGET_DIMENSION } } } ```