image_style refactoring

This commit is contained in:
mslight 2022-07-22 13:21:22 +04:00
parent 4dc5793f44
commit ffa68305f9
2 changed files with 0 additions and 178 deletions

View File

@ -1,84 +0,0 @@
# MediaPipe graph that performs hair segmentation with TensorFlow Lite on GPU.
# Used in the example in
# mediapipie/examples/android/src/java/com/mediapipe/apps/hairsegmentationgpu.
# Images on GPU coming into and out of the graph.
input_stream: "input_video"
output_stream: "output_video"
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
node: {
calculator: "ImageTransformationCalculator"
input_stream: "IMAGE_GPU:throttled_input_video"
output_stream: "IMAGE_GPU:transformed_input_video"
node_options: {
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
output_width: 256
output_height: 256
}
}
}
# Converts the transformed input image on GPU into an image tensor stored in
# tflite::gpu::GlBuffer. The zero_center option is set to false to normalize the
# pixel values to [0.f, 1.f] as opposed to [-1.f, 1.f]. With the
# max_num_channels option set to 4, all 4 RGBA channels are contained in the
# image tensor.
node {
calculator: "TfLiteConverterCalculator"
input_stream: "IMAGE_GPU:transformed_input_video"
output_stream: "TENSORS_GPU:image_tensor"
options {
[mediapipe.TfLiteConverterCalculatorOptions.ext] {
output_tensor_float_range {
min: -1
max: 1
}
}
}
}
node {
calculator: "TfLiteInferenceCalculator"
input_stream: "TENSORS_GPU:image_tensor"
output_stream: "TENSORS:stylized_tensor"
node_options: {
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
model_path: "mediapipe/models/metaf-512-mobile3.tflite"
use_gpu: true
}
}
}
node {
calculator: "TfLiteTensorsToSegmentationCalculator"
input_stream: "TENSORS:stylized_tensor"
output_stream: "MASK:mask_image"
node_options: {
[type.googleapis.com/mediapipe.TfLiteTensorsToSegmentationCalculatorOptions] {
tensor_width: 256
tensor_height: 256
tensor_channels: 3
}
}
}
# Transfers the annotated image from CPU back to GPU memory, to be sent out of
# the graph.
node: {
calculator: "ImageFrameToGpuBufferCalculator"
input_stream: "mask_image"
output_stream: "output_video"
}

View File

@ -1,94 +0,0 @@
# MediaPipe graph that performs face mesh with TensorFlow Lite on CPU.
# Input image. (ImageFrame)
input_stream: "input_video"
# Output image with rendered results. (ImageFrame)
output_stream: "output_video"
# Throttles the images flowing downstream for flow control. It passes through
# the very first incoming image unaltered, and waits for downstream nodes
# (calculators and subgraphs) in the graph to finish their tasks before it
# passes through another image. All images that come in while waiting are
# dropped, limiting the number of in-flight images in most part of the graph to
# 1. This prevents the downstream nodes from queuing up incoming images and data
# excessively, which leads to increased latency and memory usage, unwanted in
# real-time mobile applications. It also eliminates unnecessarily computation,
# e.g., the output produced by a node may get dropped downstream if the
# subsequent nodes are still busy processing previous inputs.
node {
calculator: "FlowLimiterCalculator"
input_stream: "input_video"
input_stream: "FINISHED:output_video"
input_stream_info: {
tag_index: "FINISHED"
back_edge: true
}
output_stream: "throttled_input_video"
}
# Transforms the input image on CPU to a 320x320 image. To scale the image, by
# default it uses the STRETCH scale mode that maps the entire input image to the
# entire transformed image. As a result, image aspect ratio may be changed and
# objects in the image may be deformed (stretched or squeezed), but the object
# detection model used in this graph is agnostic to that deformation.
node: {
calculator: "ImageTransformationCalculator"
input_stream: "IMAGE:throttled_input_video"
output_stream: "IMAGE:transformed_input_video"
node_options: {
[type.googleapis.com/mediapipe.ImageTransformationCalculatorOptions] {
output_width: 256
output_height: 256
}
}
}
# Converts the transformed input image on CPU into an image tensor as a
# TfLiteTensor. The zero_center option is set to true to normalize the
# pixel values to [-1.f, 1.f] as opposed to [0.f, 1.f].
node {
calculator: "TfLiteConverterCalculator"
input_stream: "IMAGE:transformed_input_video"
output_stream: "TENSORS:input_tensors"
options {
[mediapipe.TfLiteConverterCalculatorOptions.ext] {
zero_center: false
max_num_channels: 3
output_tensor_float_range {
min: 0.0
max: 255.0
}
}
}
}
# Runs a TensorFlow Lite model on CPU that takes an image tensor and outputs a
# vector of tensors representing, for instance, detection boxes/keypoints and
# scores.
node {
calculator: "TfLiteInferenceCalculator"
input_stream: "TENSORS:input_tensors"
output_stream: "TENSORS:output_tensors"
node_options: {
[type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions] {
model_path: "mediapipe/models/model_float32.tflite"
}
}
}
node {
calculator: "TfLiteTensorsToSegmentationCalculator"
input_stream: "TENSORS:output_tensors"
output_stream: "MASK:output_video"
node_options: {
[type.googleapis.com/mediapipe.TfLiteTensorsToSegmentationCalculatorOptions] {
tensor_width: 256
tensor_height: 256
tensor_channels: 3
}
}
}