feat: Added face mesh with face counter example

Change List:
- added face counter with "clock" (trigger that allow to thrack all input events)
- face counter can be used for checking whether face was detected (can be used as flag to get face landmarks from ouput stream)
This commit is contained in:
dmaletskiy 2021-07-01 12:51:14 +03:00
parent 374f5e2e7e
commit fd7f357c18
5 changed files with 390 additions and 0 deletions

View File

@ -18,6 +18,20 @@ licenses(["notice"])
package(default_visibility = ["//visibility:public"]) package(default_visibility = ["//visibility:public"])
cc_library(
name = "counting_vector_size_calculator",
srcs = ["counting_vector_size_calculator.cc"],
hdrs = ["counting_vector_size_calculator.h"],
visibility = [
"//visibility:public",
],
deps = [
"//mediapipe/framework:calculator_framework",
"//mediapipe/framework/formats:landmark_cc_proto",
],
alwayslink = 1,
)
cc_library( cc_library(
name = "alignment_points_to_rects_calculator", name = "alignment_points_to_rects_calculator",
srcs = ["alignment_points_to_rects_calculator.cc"], srcs = ["alignment_points_to_rects_calculator.cc"],

View File

@ -0,0 +1,26 @@
// Copyright 2020 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/calculators/util/counting_vector_size_calculator.h"
#include "mediapipe/framework/formats/landmark.pb.h"
namespace mediapipe {
typedef CountingVectorSizeCalculator<
std::vector<::mediapipe::NormalizedLandmarkList>>
CountingNormalizedLandmarkListVectorSizeCalculator;
REGISTER_CALCULATOR(CountingNormalizedLandmarkListVectorSizeCalculator);
} // namespace mediapipe

View File

@ -0,0 +1,79 @@
// Copyright 2020 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef MEDIAPIPE_CALCULATORS_UTIL_COUNTING_VECTOR_SIZE_CALCULATOR_H
#define MEDIAPIPE_CALCULATORS_UTIL_COUNTING_VECTOR_SIZE_CALCULATOR_H
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/formats/landmark.pb.h"
namespace mediapipe {
// A calculator that counts the size of the input vector. It was created to
// aid in polling packets in the output stream synchronously. If there is
// a clock stream, it will output a value of 0 even if the input vector stream
// is empty. If not, it will output some value only if there is an input vector.
// The clock stream must have the same time stamp as the vector stream, and
// it must be the stream where packets are transmitted while the graph is
// running. (e.g. Any input stream of graph)
//
// It is designed to be used like:
//
// Example config:
// node {
// calculator: "CountingWithVectorSizeCalculator"
// input_stream: "CLOCK:triger_signal"
// input_stream: "VECTOR:input_vector"
// output_stream: "COUNT:vector_count"
// }
//
// node {
// calculator: "CountingWithVectorSizeCalculator"
// input_stream: "VECTOR:input_vector"
// output_stream: "COUNT:vector_count"
// }
template <typename VectorT>
class CountingVectorSizeCalculator : public CalculatorBase {
public:
static ::mediapipe::Status GetContract(CalculatorContract *cc) {
if (cc->Inputs().HasTag("CLOCK")) {
cc->Inputs().Tag("CLOCK").SetAny();
}
RET_CHECK(cc->Inputs().HasTag("VECTOR"));
cc->Inputs().Tag("VECTOR").Set<VectorT>();
RET_CHECK(cc->Outputs().HasTag("COUNT"));
cc->Outputs().Tag("COUNT").Set<int>();
return ::mediapipe::OkStatus();
}
::mediapipe::Status Process(CalculatorContext *cc) {
std::unique_ptr<int> face_count;
if (!cc->Inputs().Tag("VECTOR").IsEmpty()) {
const auto &landmarks = cc->Inputs().Tag("VECTOR").Get<VectorT>();
face_count = absl::make_unique<int>(landmarks.size());
} else {
face_count = absl::make_unique<int>(0);
}
cc->Outputs().Tag("COUNT").Add(face_count.release(), cc->InputTimestamp());
return ::mediapipe::OkStatus();
};
};
} // namespace mediapipe
#endif // MEDIAPIPE_CALCULATORS_UTIL_COUNTING_VECTOR_SIZE_CALCULATOR_H

View File

@ -74,6 +74,28 @@ mediapipe_simple_subgraph(
], ],
) )
mediapipe_simple_subgraph(
name = "face_landmark_front_cpu_with_face_counter",
graph = "face_landmark_front_cpu_with_face_counter.pbtxt",
register_as = "FaceLandmarkFrontCpuWithFaceCounter",
deps = [
":face_detection_front_detection_to_roi",
":face_landmark_cpu",
":face_landmark_landmarks_to_roi",
"//mediapipe/calculators/core:begin_loop_calculator",
"//mediapipe/calculators/core:clip_vector_size_calculator",
"//mediapipe/calculators/core:constant_side_packet_calculator",
"//mediapipe/calculators/core:end_loop_calculator",
"//mediapipe/calculators/core:gate_calculator",
"//mediapipe/calculators/core:previous_loopback_calculator",
"//mediapipe/calculators/image:image_properties_calculator",
"//mediapipe/calculators/util:association_norm_rect_calculator",
"//mediapipe/calculators/util:collection_has_min_size_calculator",
"//mediapipe/calculators/util:counting_vector_size_calculator",
"//mediapipe/modules/face_detection:face_detection_short_range_cpu",
],
)
mediapipe_simple_subgraph( mediapipe_simple_subgraph(
name = "face_landmark_front_gpu", name = "face_landmark_front_gpu",
graph = "face_landmark_front_gpu.pbtxt", graph = "face_landmark_front_gpu.pbtxt",

View File

@ -0,0 +1,249 @@
# MediaPipe graph to detect/predict face landmarks. (CPU input, and inference is
# executed on CPU.) This graph tries to skip face detection as much as possible
# by using previously detected/predicted landmarks for new images.
#
# It is required that "face_detection_short_range.tflite" is available at
# "mediapipe/modules/face_detection/face_detection_short_range.tflite"
# path during execution.
#
# It is required that "face_landmark.tflite" is available at
# "mediapipe/modules/face_landmark/face_landmark.tflite"
# path during execution.
#
# EXAMPLE:
# node {
# calculator: "FaceLandmarkFrontCpu"
# input_stream: "IMAGE:image"
# input_side_packet: "NUM_FACES:num_faces"
# output_stream: "LANDMARKS:multi_face_landmarks"
# }
type: "FaceLandmarkFrontCpu"
# CPU image. (ImageFrame)
input_stream: "IMAGE:image"
# Max number of faces to detect/track. (int)
input_side_packet: "NUM_FACES:num_faces"
# Collection of detected/predicted faces, each represented as a list of 468 face
# landmarks. (std::vector<NormalizedLandmarkList>)
# NOTE: there will not be an output packet in the LANDMARKS stream for this
# particular timestamp if none of faces detected. However, the MediaPipe
# framework will internally inform the downstream calculators of the absence of
# this packet so that they don't wait for it unnecessarily.
output_stream: "LANDMARKS:multi_face_landmarks"
# Extra outputs (for debugging, for instance).
# Detected faces. (std::vector<Detection>)
output_stream: "DETECTIONS:face_detections"
# Regions of interest calculated based on landmarks.
# (std::vector<NormalizedRect>)
output_stream: "ROIS_FROM_LANDMARKS:face_rects_from_landmarks"
# Regions of interest calculated based on face detections.
# (std::vector<NormalizedRect>)
output_stream: "ROIS_FROM_DETECTIONS:face_rects_from_detections"
# (int)
output_stream: "FACE_COUNT_FROM_LANDMARKS:face_count"
# Defines whether landmarks on the previous image should be used to help
# localize landmarks on the current image.
node {
name: "ConstantSidePacketCalculator"
calculator: "ConstantSidePacketCalculator"
output_side_packet: "PACKET:use_prev_landmarks"
options: {
[mediapipe.ConstantSidePacketCalculatorOptions.ext]: {
packet { bool_value: true }
}
}
}
node {
calculator: "GateCalculator"
input_side_packet: "ALLOW:use_prev_landmarks"
input_stream: "prev_face_rects_from_landmarks"
output_stream: "gated_prev_face_rects_from_landmarks"
}
# Determines if an input vector of NormalizedRect has a size greater than or
# equal to the provided num_faces.
node {
calculator: "NormalizedRectVectorHasMinSizeCalculator"
input_stream: "ITERABLE:gated_prev_face_rects_from_landmarks"
input_side_packet: "num_faces"
output_stream: "prev_has_enough_faces"
}
# Drops the incoming image if enough faces have already been identified from the
# previous image. Otherwise, passes the incoming image through to trigger a new
# round of face detection.
node {
calculator: "GateCalculator"
input_stream: "image"
input_stream: "DISALLOW:prev_has_enough_faces"
output_stream: "gated_image"
options: {
[mediapipe.GateCalculatorOptions.ext] {
empty_packets_as_allow: true
}
}
}
# Detects faces.
node {
calculator: "FaceDetectionShortRangeCpu"
input_stream: "IMAGE:gated_image"
output_stream: "DETECTIONS:all_face_detections"
}
# Makes sure there are no more detections than the provided num_faces.
node {
calculator: "ClipDetectionVectorSizeCalculator"
input_stream: "all_face_detections"
output_stream: "face_detections"
input_side_packet: "num_faces"
}
# Calculate size of the image.
node {
calculator: "ImagePropertiesCalculator"
input_stream: "IMAGE:gated_image"
output_stream: "SIZE:gated_image_size"
}
# Outputs each element of face_detections at a fake timestamp for the rest of
# the graph to process. Clones the image size packet for each face_detection at
# the fake timestamp. At the end of the loop, outputs the BATCH_END timestamp
# for downstream calculators to inform them that all elements in the vector have
# been processed.
node {
calculator: "BeginLoopDetectionCalculator"
input_stream: "ITERABLE:face_detections"
input_stream: "CLONE:gated_image_size"
output_stream: "ITEM:face_detection"
output_stream: "CLONE:detections_loop_image_size"
output_stream: "BATCH_END:detections_loop_end_timestamp"
}
# Calculates region of interest based on face detections, so that can be used
# to detect landmarks.
node {
calculator: "FaceDetectionFrontDetectionToRoi"
input_stream: "DETECTION:face_detection"
input_stream: "IMAGE_SIZE:detections_loop_image_size"
output_stream: "ROI:face_rect_from_detection"
}
# Counting a multi_faceLandmarks vector size. The image stream is only used to
# make the calculator work even when there is no input vector.
node {
calculator: "CountingNormalizedLandmarkListVectorSizeCalculator"
input_stream: "CLOCK:image"
input_stream: "VECTOR:multi_face_landmarks"
output_stream: "COUNT:face_count"
}
# Collects a NormalizedRect for each face into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
# timestamp.
node {
calculator: "EndLoopNormalizedRectCalculator"
input_stream: "ITEM:face_rect_from_detection"
input_stream: "BATCH_END:detections_loop_end_timestamp"
output_stream: "ITERABLE:face_rects_from_detections"
}
# Performs association between NormalizedRect vector elements from previous
# image and rects based on face detections from the current image. This
# calculator ensures that the output face_rects vector doesn't contain
# overlapping regions based on the specified min_similarity_threshold.
node {
calculator: "AssociationNormRectCalculator"
input_stream: "face_rects_from_detections"
input_stream: "gated_prev_face_rects_from_landmarks"
output_stream: "face_rects"
options: {
[mediapipe.AssociationCalculatorOptions.ext] {
min_similarity_threshold: 0.5
}
}
}
# Calculate size of the image.
node {
calculator: "ImagePropertiesCalculator"
input_stream: "IMAGE:image"
output_stream: "SIZE:image_size"
}
# Outputs each element of face_rects at a fake timestamp for the rest of the
# graph to process. Clones image and image size packets for each
# single_face_rect at the fake timestamp. At the end of the loop, outputs the
# BATCH_END timestamp for downstream calculators to inform them that all
# elements in the vector have been processed.
node {
calculator: "BeginLoopNormalizedRectCalculator"
input_stream: "ITERABLE:face_rects"
input_stream: "CLONE:0:image"
input_stream: "CLONE:1:image_size"
output_stream: "ITEM:face_rect"
output_stream: "CLONE:0:landmarks_loop_image"
output_stream: "CLONE:1:landmarks_loop_image_size"
output_stream: "BATCH_END:landmarks_loop_end_timestamp"
}
# Detects face landmarks within specified region of interest of the image.
node {
calculator: "FaceLandmarkCpu"
input_stream: "IMAGE:landmarks_loop_image"
input_stream: "ROI:face_rect"
output_stream: "LANDMARKS:face_landmarks"
}
# Calculates region of interest based on face landmarks, so that can be reused
# for subsequent image.
node {
calculator: "FaceLandmarkLandmarksToRoi"
input_stream: "LANDMARKS:face_landmarks"
input_stream: "IMAGE_SIZE:landmarks_loop_image_size"
output_stream: "ROI:face_rect_from_landmarks"
}
# Collects a set of landmarks for each face into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of landmarks at the BATCH_END
# timestamp.
node {
calculator: "EndLoopNormalizedLandmarkListVectorCalculator"
input_stream: "ITEM:face_landmarks"
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
output_stream: "ITERABLE:multi_face_landmarks"
}
# Collects a NormalizedRect for each face into a vector. Upon receiving the
# BATCH_END timestamp, outputs the vector of NormalizedRect at the BATCH_END
# timestamp.
node {
calculator: "EndLoopNormalizedRectCalculator"
input_stream: "ITEM:face_rect_from_landmarks"
input_stream: "BATCH_END:landmarks_loop_end_timestamp"
output_stream: "ITERABLE:face_rects_from_landmarks"
}
# Caches face rects calculated from landmarks, and upon the arrival of the next
# input image, sends out the cached rects with timestamps replaced by that of
# the input image, essentially generating a packet that carries the previous
# face rects. Note that upon the arrival of the very first input image, a
# timestamp bound update occurs to jump start the feedback loop.
node {
calculator: "PreviousLoopbackCalculator"
input_stream: "MAIN:image"
input_stream: "LOOP:face_rects_from_landmarks"
input_stream_info: {
tag_index: "LOOP"
back_edge: true
}
output_stream: "PREV_LOOP:prev_face_rects_from_landmarks"
}